FINAL

Town Creek Restoration Project – Option B Year 1 Monitoring Report

Stanly County, North Carolina

DMS Project ID Number – 95026; NC DEQ Contract No. 003990

Yadkin Pee-Dee River Basin: 03040105060040

Project Info: Monitoring Year: 1 of 5

Year of Data Collection: 2016

Year of Completed Construction: 2016 Submission Date: December 2017

Submitted To: NCDEQ – Division of Mitigation Services

1625 Mail Service Center

Raleigh, NC 27699

NCDEQ Contract ID No. 003990

Town Creek Restoration Project – Option B Year 1 Monitoring Report

Stanly County, North Carolina

DMS Project ID Number – 95026; NC DEQ Contract No. 003990

SAW-2014-00016; DWR#14-1259 V2

Yadkin Pee-Dee River Basin: 03040105060040

Report Prepared and Submitted by Michael Baker Engineering, Inc.

NC Professional Engineering License #F-1084

Michael Baker Engineering, Inc. 9716-B Rea Road #56, Charlotte, NC 28277

TABLE OF CONTENTS

1.0 EXE(CUT	IVE SU	J MM	ARY1
2.0 MET	HOI	OOLOG	5Υ	2
2.1. Stree 2.1.1 Moi 2.1.1.1 2.1.1.2 2.1.1.3 2.1.2 Stree 2.1.2.1 2.1.2.2 2.1.3 Pho 2.1.3.1 2.1.3.2 2.1.4 Visu	rpholo Din Lor Sub eam H Bar Flo togra Latera Longi	donitoring ogic Paramension	gProfile Profile Sedime entation mentation entation Photo	2 nd Channel Stability 3 3 3 nt Transport 3 3 3 4 4 5 4 5 5
3.0 REFE	ERE	NCES.	••••••	6
				APPENDICES
Appendix	A	Project Figure Table Table Table Table	1 1 2 3 4	ity Map and Background Tables Vicinity Map and Directions Project Mitigation Components Project Activity and Reporting History Project Contacts Project Attribute
Appendix	В	Visual Figure Table Table	Assess 2 5a-e 5f 6a 6b	Current Data Current Condition Plan View (CCPV) Visual Stream Morphology Stability Assessment Stream Problem Areas (SPAs) Vegetation Condition Assessment Vegetation Problem Areas (VPAs)
Appendix	C	Vegeta Table Table Table	tion Pl 7 8 9	Vegetation Plot Criteria Attainment CVS Vegetation Plot Metadata CVS Stem Count of Planted Stems by Plot and Species t Photos
Appendix	D	Stream Figure Figure		

Table 10 Baseline Stream Summary
 Table 11a Cross-section Morphology Data
 Table 11b Stream Reach Morphology Data

Appendix E Hydrologic Data

Figure 5a-b In-stream Flow Gauge Graphs

Figure 6 Monthly Rainfall Data

Table 12 Verification of Bankfull Events

Table 13 Verification of In-stream Flow Conditions

Hydrologic Data Photos

1.0 EXECUTIVE SUMMARY

Michael Baker Engineering, Inc. (Baker) restored 2,760 linear feet (LF) and enhanced approximately 943 LF of jurisdictional stream along UT to Town Creek. This report documents and presents the Year 1 monitoring data as required during the five-year monitoring period.

The primary restoration goals of the project are described below:

- Create geomorphically stable conditions along the channels,
- Enhance hydrologic connections between streams and the degraded riparian buffer and overall ecosystem functionality;
- Restore and protect riparian buffer functions and corridor habitat in perpetuity by establishing a permanent conservation easement.
- Improve terrestrial habitat and reduce sediment and nutrient loading to the project reaches and the Little Long Creek Watershed.

To accomplish these goals, the following objectives were identified:

- Restore existing incised, eroding, and channelized streams by creating a stable stream channel with access to its floodplain,
- Improve in-stream habitat by providing a more diverse bedform with riffles and pools, creating deeper pools and areas of water re-aeration, and reducing bank erosion,
- Prevent cattle from accessing the project boundary by installing permanent fencing and thus reduce excessive bank erosion and undesired nutrient inputs,
- Plant native species riparian buffer vegetation along stream bank and floodplain areas, protected by a
 permanent conservation easement, to increase stormwater runoff filtering capacity, improve bank
 stability, and shade the stream to decrease water temperature,
- Control invasive species vegetation within the project area and, if necessary, continue treatments during the monitoring period.

The Town Creek Restoration Project – Option B (Site) is located in Stanly County, approximately 1.5 miles west of the Town of New London, within cataloging unit 03040105 of the Yadkin Pee-Dee River Basin. The Site is located in a North Carolina Division of Mitigation Services (NCDMS) - Targeted Local Watershed (HUC 03040105060-040). Directions to the Project Site can be found in Figure 1 of Appendix A.

During Year 1 monitoring, the planted acreage performance categories were functioning at 100 percent with no bare areas or low stem density areas to report. No invasive species areas of concern, exceeding the mapping threshold were documented; however, individuals stems of *Ligustrum sinese* (Chinese privet) were noted within the easement. These areas were located predominantly in the areas of the easement not cleared during construction and where mature woody vegetation is present.

Based on data collected from the eight monitoring plots during Year 1 monitoring, the average density of total planted stems per plot ranges from 647 to 850 stems per acre with a tract mean of 754 stems per acre. Therefore, the Year 1 data demonstrate that the Site is on track for meeting the minimum success interim criteria of 320 trees per acre by the end of Year 3. Vegetation stem counts are summarized in Tables 7 and 9 of Appendix C.

The thirteen (13) permanent cross-sections located throughout the Site show minimal adjustment to stream dimension since construction. In addition, Tables 5a through 5f (Appendix B) indicate the Site has remained geomorphically stable with lateral/vertical stability and in-stream structure performance of 100% on all stream reaches and no noted areas of bank scour and/or erosion around structures. Visual observations and a review

of pebble count data collected indicated that stream is sufficiently moving fines through the system. Riffles are comprised of a mix of substrates with the bed material moving towards a mix of coarser substrates. Cross-sectional and pebble count data are provided in Figures 3 and 4, respectively, in Appendix D.

In-stream pressure transducers, TC FL1 and TC FL2, were installed on Reach 1 to document intermittent flow conditions throughout the monitoring year. Since post-construction installation, each gauge has documented at least one period of consecutive stream flow for the required minimum of 30 days, with a maximum of 168 consecutive days for TC FL1 and 150 consecutive days for TC FL2. Figures 5a and 5b in Appendix E, depict the documented flow conditions for each gauge from installation through Monitoring Year 1 relative to local rainfall data, while Table 13 documents both the total cumulative days of flow and the maximum number of consecutives days of flow.

Lastly at least one post-construction bankfull event occurred during MY1. Documentation of the event was recorded on 10/12/2016 and is located in Table 12 in Appendix E.

Summary information/data related to the Site and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report Appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report and in the Mitigation Plan available on the NCDMS' website. All raw data supporting the tables and figures in the appendices is available from NCDMS upon request.

2.0 METHODOLOGY

The five-year monitoring plan for the Site includes criteria to evaluate the success of the stream and vegetation components of the project. Monitoring methods used will follow the NCDMS Monitoring Report Template, Version 1.3 – 1/15/10 and are based on the design approaches and overall project goals. To evaluate success criteria associated with a geomorphically stable channel, hydrologic connectivity, and aquatic habitat diversity, geomorphic monitoring methods will be conducted for project reaches that involve Restoration and Enhancement Level I mitigation. The specific locations of monitoring features, such as vegetation plots, permanent cross-sections, reference photograph stations and crest gauges, are shown on the CCPV sheets found in Figure 2 of Appendix B.

Year 1 monitoring data were collected in October and November 2016. All visual site assessment data contained in Appendix B were collected on October 12, 2016. Vegetation data and plot photos were collected on November 10 and 12, 2016, respectively. Sediment data were collected on October 11 and 12, 2016.

Stream survey data were collected on November 3rd and certified on November 9th of 2016. Stream survey data were collected to meet the requirements for a topographic ground survey to the accuracy of Class C Vertical and Class A Horizontal (21 NCAC-56 section .1606) and was geo-referenced to the NAD83 State Plane Coordinate System, FIPS3200 in US Survey Feet, which was derived from the Town Creek Restoration Project Option B's As-built Survey.

2.1 Stream Monitoring

Geomorphic monitoring of the Restoration and Enhancement Level I reaches will be conducted once a year for a minimum of five years following the completion of construction. These activities will evaluate the success criteria associated with a geomorphically stable channel, hydrologic connectivity, and aquatic habitat diversity. The stream parameters to be monitored include stream dimension (cross-sections), pattern (planimetric survey), profile (longitudinal profile survey), visual observation with photographic documentation, and documentation of bank full events. Additionally, monitoring methods for all reaches will include those described under Photo Documentation of Site, Visual Assessment, and Vegetation Monitoring. The methods used and related success criteria are described below for each parameter. Figure 2 shows approximate locations of the proposed monitoring devices throughout the project site.

2.1.1 Morphologic Parameters and Channel Stability

2.1.1.1 Dimension

A total of thirteen (13) permanent cross-sections, nine (9) riffles and four (4) pools, were installed throughout the entire project area. Cross-sections selected for monitoring included representative riffle and pool facets for each of the three project reaches, Reach 2, 3, and 5, which implemented at least 500 linear feet of Restoration or Enhancement I activities.

Each cross-section was marked on both banks with permanent pins to establish the exact transect used. A common benchmark was also chosen to consistently reference and facilitate the comparison of year-to-year data. The cross-sectional surveys are conducted annually and include measurements of Bank Height Ratio (BHR) and Entrenchment Ratio (ER). The monitoring survey includes points measured at all breaks in slope, including top of stream banks, bankfull, inner berm, edge of water, and thalweg, if the features are present. Riffle cross-sections are classified using the Rosgen Stream Classification System (Rosgen, 1994), and all monitored cross-sections should fall within the quantitative parameters defined for channels of the design stream type.

There should be little change in annual cross-sectional surveys from those collected during the post-construction as-built survey. If changes do take place, they will be evaluated to determine if they represent a movement toward a more unstable condition (e.g., down-cutting or erosion) or a movement toward increased stability (e.g., settling, vegetative changes, deposition along the banks, or decrease in width/depth ratio). Cross-sectional data is presented in Figure 3 of Appendix D.

2.1.1.2 Longitudinal Profile

A longitudinal profile was surveyed for the entire length of channel immediately after construction to document as-built baseline conditions for the first year of monitoring only. The survey was tied to a permanent benchmark and measurements included thalweg, water surface, bankfull, and top of low bank. Each of these measurements was taken at the head of each feature (e.g., riffle, pool) and at the maximum pool depth. Yearly longitudinal profiles will not be conducted during subsequent monitoring years unless channel instability has been documented or remedial actions/repairs are required by the USACE or NCDMS.

2.1.1.3 Substrate and Sediment Transport

After construction, there should be minimal change in the pebble count data over time given the current watershed conditions and sediment supply regime. A substrate sample was collected for each riffle cross-sections where constructed riffles were installed (X1, X4, X5, X7, X9, X10, and X12). Samples collected combined with evidence provided by changes in cross-sectional data and visual assessments will reveal changes in sediment gradation that occur over time as the stream adjusts to upstream sediment loads. Significant changes in sediment gradation were evaluated with respect to stream stability and watershed changes. Bed material distribution data are located in Figure 4 of Appendix D.

2.1.2 Stream Hydrology

2.1.2.1 Bankfull Events

The occurrence of bankfull events within the monitoring period were documented by the use of a crest gauge and photographs. The crest gauge will record the highest watermark between site visits, and the gauge will be checked at each site visit to determine if a bankfull event has occurred. The crest gauge was installed the floodplain of Reach 5 within ten feet (horizontal) of the restored channel. Photographs will be used to document the occurrence of debris lines and sediment deposition on the floodplain during monitoring site visits.

Two bankfull flow events must be documented within a five-year monitoring period. The two bankfull events must occur in separate years; otherwise, the monitoring will continue until two bankfull events have been documented in separate years to demonstrate a floodplain connection has been restored.

2.1.2.2 Flow Documentation

A combination of photographic and flow gauge data were collected from two in-stream pressure transducers (TC FL1 and TC FL2) and a remote in-field camera that were installed on Reach 1. Collected data will document that the restored intermittent stream system continues to exhibit base flow for of at least 30 consecutive days throughout each monitoring year under normal climatic conditions. In order to determine if rainfall amounts were normal for the given year, rainfall gauge data was obtained from the nearest Stanly County weather station (CRONOS Database, NEWL – North Stanly Middle School, if available) and compared to the average monthly rainfall amounts from the Stanly County WETS Table (USDA, 2016). If a normal year of precipitation does not occur during the first five years of monitoring, flow conditions will continue to be monitored on the site until it documents that the intermittent streams have been flowing during the appropriate times of the year.

Flow data and photographic documentation collected during Year 1 monitoring are located in Appendix E.

2.1.3 Photographic Documentation of Site

Photographs were used to document restoration success visually. Reference stations and cross-section photos were photographed during the as-built survey; this will be repeated for at least five years following construction. Reference photos were taken once a year, from a height of approximately five to six feet. Permanent markers ensure that the same locations (and view directions) are utilized during each monitoring period. Photographers will make an effort to consistently maintain the same area in each photo over time. Selected site photographs are shown in Appendix B for reference stations and Appendix D for cross-sections.

2.1.3.1 Lateral Reference Photos

Reference photo transects were taken of the right and left banks at each permanent cross-section. A survey tape was captured in most photographs which represents the cross-section line located perpendicular to the channel flow. The water line was located in the lower edge of the frame in order to document bank and riparian conditions.

2.1.3.2 Longitudinal Station Photos

Stream reaches were photographed longitudinally beginning at the upstream portion of the Site and moving downstream. Photographs were taken looking both upstream and downstream at delineated locations throughout the restored stream valley. The photograph points were established close enough together to provide an overall view of the reach lengths, primary grade control structures, and valley crenulations. The angle of the photo depends on what angle provides the best view was noted and will be continued in future photos. Site photographs are located in Appendix B.

2.1.4 Visual Assessment

Visual monitoring assessments of all stream sections will be conducted by qualified personnel twice per monitoring year with at least five months in between each site visit. Photographs will be used to document system performance and any areas of concern related to stream bank stability, condition of in-stream structures, channel migration, aggradation/degradation, headcuts, live stake mortality, impacts from invasive plant species or animal species, floodplain vegetative conditions, and condition of pools and riffles. The photo locations will be shown on a plan view map and descriptions will be documented in as either stream problem areas (SPAs) or vegetative problem areas (VPAs) in there associated monitoring assessment tables located in Appendix B.

2.2 Vegetation Monitoring

In order to determine if the criteria are achieved, vegetation-monitoring quadrants were installed and are monitored across the restoration site in accordance with the CVS-NCEEP Protocol for Recording Vegetation, Version 4.0 (2006). The vegetation monitoring plots are a minimum of 2 percent of the planted portion of the site with eight plots established randomly within the planted riparian buffer areas. No monitoring quadrants were established within the undisturbed wooded areas of the project area. The size of individual quadrants are 100 square meters for woody tree species.

Level 1 CVS vegetation monitoring was conducted between spring, after leaf-out has occurred, and fall prior to leaf fall. Individual quadrant data provided during subsequent monitoring events will include species composition, density, survival, and stem height. Relative values were calculated, and importance values were determined. Individual seedlings were marked to ensure that they can be found in succeeding monitoring years. Mortality was determined from the difference between the previous year's living, planted seedlings and the current year's living, planted seedlings.

The interim measure of vegetative success for the site is the survival of at least 320, 3-year old, planted trees per acre at the end of Year 3 of the monitoring period. The final vegetative success criteria is the survival of 260, 5-year old, planted trees per acre at the end of Year 5 of the monitoring period.

Photographs were used to visually document vegetation success in sample plots and are located in Appendix C.

3.0 REFERENCES

Carolina Vegetation Survey (CVS) and NC Division of Mitigation Services (formerly NC Ecosystem Enhancement Program). 2012. CVS-NCEEP Data Entry Tool v. 2.3.1. University of North Carolina, Raleigh, NC.

Lee, M., Peet R., Roberts, S., Wentworth, T. 2006. CVS-NCEEP Protocol for Recording Vegetation, Version 4.0.

North Carolina Division of Mitigation Services (formerly NC Ecosystem Enhancement Program). 2010. Procedural Guidance and Content Requirements for EEP Monitoring Reports, v. 1.30, dated 1/15/10. Raleigh, NC.

Rosgen, D. L. 1994. A Classification of Natural Rivers. Catena 22:169-199.

State Climate Office of North Carolina, 2016. CRONOS Database, North Stanly Middle School (NEWL), Stanly County, NC. http://climate.ncsu.edu/cronos/?station=NEWL&temporal=sensormeta

United States Department of Agriculture, 2016. WETS Table. Climate Data for Stanly County, NC. Wets Station: Albemarle, NC 0090, FIPS: 37167, 1971 - 2000. http://agacis.rcc-acis.org/37167/wets

APPENDIX A

Project Vicinity Map and Background Tables

Table 1. Project Mitiga Town Creek Restoration	_	MS Project No ID. 9:	5026							
Project Component (reach ID, etc.)		Existing Footage or Acreage		Restored Footage, Acreage, or SF	Creditable Footage, Acreage, or SF	Restoration Level	Ap Priority Level	proach Mitigation Ratio (X:1)	Mitigation Credits	Notes/Comments
Reach 1		363	10+33 - 13+50	317	317	R	PI	1	317	Full Channel Restoration, Planted Buffer, Exclusion of Livestock, and Permanent Conservation Easement.
Reach 2		737	13+50 - 20+61	711	711	EI	PIII	1.5	474	Dimension and Profile modified in keeping with reference, Planted Buffer, Livestock Exclusion, Permanent Conservation Easement. A 26-ft culverted farm road crossing was implemented between Reach 2 and Reach 3 from Station 20+61 - 20+87.
Reach 3		1,849	20+87 - 37+08	1,621	1,621	R	PI	1	1,621	Full Channel Restoration, Planted Buffer, Exclusion of Livestock, and Permanent Conservation Easement.
Reach 4		234	37+08 - 39+40	232	232	EI	PIII	1.5	155	Dimension and Profile modified in keeping with reference, Planted Buffer, Livestock Exclusion, Permanent Conservation Easement.
Reach 5		849	39+40 - 47+87	847	822	R	PI	1	822	Full Channel Restoration, Planted Buffer, Exclusion of Livestock, Permanent Conservation Easement and a 27-ft culverted farm road crossing.
Wetland Group 1 (WG1)										
Wetland Group 2 (WG2)										
Buffer Group 1 (BG1) Buffer Group 2 (BG2) Buffer Group 3 (BG3)										

Length and Area Summations by Mitigation Category

Restoration Level	Stream (linear feet)	-	wetland	Non-riparian Wetland (acres)	Credited Buffer (square feet)
	(======================================	Riverine	Non-Riverine	(332.52)	(34)2322 2 2 2 2 3 7
Restoration	2,760				
Enhancement					
Enhancement I	943				
Enhancement II					
Creation					
Preservation					
High Quality Pres					

Overall Assets Summary

Asset	Overall
Category	Credits
Stream	3,389

General Note - The above component table is intended to be a close complement to the asset map. Each entry in the above table should have clear distinction and appropriate symbology in the asset map.

- 1 Wetland Groups represent pooled wetland polygons in the map with the same wetland type and restoration level. If some of the wetland polygons within a group are in meaningfully different landscape positions, soil types or have different community targets (as examples), then further segmentation in the table may be warranted. Buffer groups represent pooled buffer polygons with common restoration levels.
- 2 **Wetland Position and Hydro Type** Indicates Riparian Riverine, (RR) , riparinan non-riverine (RNR) or Non-Riverine (NR)
- 3- Restored Footage, Acreage or Square Feet (SF)
- 4 Creditible Footage, Acreage or Square feetcreditible anounts after exclusion and reductions are accounted for, such as utility impacts, crossings, single

^{*} Stream assests are based on the stream length from the As-Built survey. Since the As-Built survey stream lengths exceeded the anticipated design lengths, the stream assets exceeded that of the proposed assests listed in the Mitigation Plan.

Table 2. Project Activity and Reporting History
Town Creek Restoration Project - Option B: DMS Project No ID. 95026

Elapsed Time Since Grading/Planting Complete: 11 Months Number of Reporting Years: 1

Activity or Report	Scheduled	Data Collection	Actual Completion or	
Activity of Report	Completion	Complete	Delivery	
Mitigation Plan Prepared	N/A	N/A	Aug-14	
Mitigation Plan Amended	N/A	N/A	Oct-14	
Mitigation Plan Approved	N/A	N/A	Feb-15	
Final Design – (at least 90% complete)	N/A	N/A	Feb-15	
Construction Begins	N/A	N/A	Oct-15	
Temporary S&E mix applied to entire project area	N/A	N/A	Jan-16	
Permanent seed mix applied to entire project area	Feb-16	N/A	Jan-16	
Planting of live stakes	Feb-16	N/A	Mar-16	
Planting of bare root trees	Feb-16	N/A	Mar-16	
End of Construction	Feb-16	N/A	Jan-16	
Survey of As-built conditions (Year 0 Monitoring-baseline)	Apr-16	May-16	Jun-16	
Baseline Monitoring Report	May-16	Jun-16	Nov-16	
Year 1 Monitoring	Dec-16	Dec-16	Jan-17	
Year 2 Monitoring	Dec-17	N/A	N/A	
Year 3 Monitoring	Dec-18	N/A	N/A	
Year 4 Monitoring	Dec-19	N/A	N/A	
Year 5 Monitoring	Dec-20	N/A	N/A	

Table 3. Project Contacts Town Creek Posteration Project Ontion P.	DMC Ducient ID No. 05026					
Town Creek Restoration Project - Option Barbary Designer	: DMS Project ID No. 95020					
Michael Baker Engineering, Inc.	797 Haywood Road, Suite 201 Asheville, NC 28806 Contact: Jake Byers, PE, Tel. 828-412-6101					
Construction Contractor	Jake Byers, FE, 161. 020-412-0101					
Wright Contracting, LLC.	160 Walker Road Lawndale, NC 28090 Contact: Joe Wright, Tel. 919-663-0810					
Planting Contractor	<u> </u>					
H.J. Forest Service	P.O. Box 458 Holly Ridge, NC 28445 Contact: Matt Hitch, Tel. 910-512-1743					
Seeding Contractor	·					
Wright Contracting, LLC.	160 Walker Road Lawndale, NC 28090 <u>Contact:</u> Joe Wright, Tel. 919-663-0810					
Seed Mix Sources	Green Resources, Tel. 336-855-6363					
Nursery Stock Suppliers	Mellow Marsh Farm, Tel. 919-742-1200 Mellow Marsh Farm, Tel. 919-742-1200 Foggy Mountain Nursery, Tel. 336-384-5323 ArborGen, Tel. 843-528-3203					
Monitoring Performers	,					
Michael Baker Engineering, Inc.	9716-B Rea Road, #56 Charlotte, NC 28277 Contact:					
Stream Monitoring Point of Contact Vegetation Monitoring Point of Contact	Kristi Suggs, Tel. 704-665-2206 Kristi Suggs, Tel. 704-665-2206					

OMS Project ID	No. 95026				
	t Information				
	Town Creek Resto	ration Project - Op	otion B		
	Stanly				
	11.97				
	35.434 N, -80.242	1 W			
roject Watershe	d Summary Inforn	nation			
	Piedmont				
	Carolina Slate Belt				
	Yadkin - Pee Dee				
	03040105 / 03040	105060-040			
	03-07-13				
	134.8				
	<5%				
			(25%) Imperviou	s Cover (7%)	
	Lower Yadkin RB	RP, 2009	-		
	Warm				
	100%				
	No activity observe	ed			
Reach Sum	mary Information				
Reach 1	Reach 2	Reach 3	Reach 4	Reach 5	
317	711	1,621	232	822	
VII	VII	VII	VII	VII	
59.8	77.8	115.6	119.4	134.8	
27.25	27.25 - 32.0	32	32	32	
	C, I	ndex #: 13-17-31-	1-1		
E4b: Incised,	E4 : Incised,	C4: voriable:	E4: Incised &	C4 and E4:	
unstable &	unstable &	*	Incised &		
straight	straight	unstable		straight	
	E / C / E / D		straight		
Eb → G → B	E→G→F→Bc	c $C \rightarrow G \rightarrow F \rightarrow C$ $E \rightarrow Gc \rightarrow F \rightarrow C$ $C \rightarrow Gc \rightarrow G$			
		C→G→F→C		C→Gc→F→C	
Eb→G→B C4	E→G→F→Bc C4	C→G→F→C C4	E→Gc→F→C C4	C→Gc→F→C C4	
				C4 OaA	
C4	C4	C4	C4	C4 OaA	
C4 BaD	C4 BaD, BaF	C4 BaF	C4 BaF	C4 OaA Moderately well	
C4 BaD Well drained	C4 BaD, BaF Well drained	C4 BaF Well drained	C4 BaF Well drained	C4 OaA Moderately well drained	
C4 BaD Well drained Non-Hydric	C4 BaD, BaF Well drained Non-Hydric	C4 BaF Well drained Non-Hydric	C4 BaF Well drained Non-Hydric	C4 OaA Moderately well drained Hydric	
C4 BaD Well drained Non-Hydric 0.0181	C4 BaD, BaF Well drained Non-Hydric 0.0180 N/A	C4 BaF Well drained Non-Hydric 0.0122	C4 BaF Well drained Non-Hydric 0.0120 N/A	C4 OaA Moderately well drained Hydric 0.0128	
C4 BaD Well drained Non-Hydric 0.0181 N/A	C4 BaD, BaF Well drained Non-Hydric 0.0180 N/A Pie	C4 BaF Well drained Non-Hydric 0.0122 N/A dmont Small Stree	C4 BaF Well drained Non-Hydric 0.0120 N/A	C4 OaA Moderately well drained Hydric 0.0128 N/A	
C4 BaD Well drained Non-Hydric 0.0181	C4 BaD, BaF Well drained Non-Hydric 0.0180 N/A	C4 BaF Well drained Non-Hydric 0.0122 N/A	C4 BaF Well drained Non-Hydric 0.0120 N/A	C4 OaA Moderately well drained Hydric 0.0128	
C4 BaD Well drained Non-Hydric 0.0181 N/A	C4 BaD, BaF Well drained Non-Hydric 0.0180 N/A Pie	C4 BaF Well drained Non-Hydric 0.0122 N/A dmont Small Stree	C4 BaF Well drained Non-Hydric 0.0120 N/A	C4 OaA Moderately well drained Hydric 0.0128 N/A	
C4 BaD Well drained Non-Hydric 0.0181 N/A	C4 BaD, BaF Well drained Non-Hydric 0.0180 N/A Pie	C4 BaF Well drained Non-Hydric 0.0122 N/A dmont Small Strea	C4 BaF Well drained Non-Hydric 0.0120 N/A	C4 OaA Moderately well drained Hydric 0.0128 N/A	
C4 BaD Well drained Non-Hydric 0.0181 N/A 0% Regulator	C4 BaD, BaF Well drained Non-Hydric 0.0180 N/A Pie 0% y Considerations	C4 BaF Well drained Non-Hydric 0.0122 N/A dmont Small Strea	C4 BaF Well drained Non-Hydric 0.0120 N/A am 0%	C4 OaA Moderately well drained Hydric 0.0128 N/A 0%	
C4 BaD Well drained Non-Hydric 0.0181 N/A 0% Regulator Applicable	C4 BaD, BaF Well drained Non-Hydric 0.0180 N/A Pie 0% V Considerations Resolved	C4 BaF Well drained Non-Hydric 0.0122 N/A dmont Small Strea 0% Supp	C4 BaF Well drained Non-Hydric 0.0120 N/A am 0%	C4 OaA Moderately well drained Hydric 0.0128 N/A 0%	
C4 BaD Well drained Non-Hydric 0.0181 N/A 0% Regulator Applicable Yes	C4 BaD, BaF Well drained Non-Hydric 0.0180 N/A Pie 0% y Considerations Resolved Yes	C4 BaF Well drained Non-Hydric 0.0122 N/A dmont Small Stree 0% Supp	C4 BaF Well drained Non-Hydric 0.0120 N/A am 0% orting Document ategorical Exclusion	C4 OaA Moderately well drained Hydric 0.0128 N/A 0% ation on	
C4 BaD Well drained Non-Hydric 0.0181 N/A 0% Regulator Applicable Yes Yes	C4 BaD, BaF Well drained Non-Hydric 0.0180 N/A Pie 0% V Considerations Resolved Yes Yes	C4 BaF Well drained Non-Hydric 0.0122 N/A dmont Small Stree 0% Supp Ca	C4 BaF Well drained Non-Hydric 0.0120 N/A am 0% orting Document ategorical Exclusivategorical Exclusivategor	C4 OaA Moderately well drained Hydric 0.0128 N/A 0% Cation on on	
C4 BaD Well drained Non-Hydric 0.0181 N/A 0% Regulator Applicable Yes Yes Yes	C4 BaD, BaF Well drained Non-Hydric 0.0180 N/A Pie 0% y Considerations Resolved Yes Yes Yes	C4 BaF Well drained Non-Hydric 0.0122 N/A dmont Small Stree 0% Supp Ca	C4 BaF Well drained Non-Hydric 0.0120 N/A am 0% orting Document ategorical Exclusivategorical Exclusivategor	C4 OaA Moderately well drained Hydric 0.0128 N/A 0% ation on on on	
C4 BaD Well drained Non-Hydric 0.0181 N/A 0% Regulator Applicable Yes Yes Yes Yes Yes	C4 BaD, BaF Well drained Non-Hydric 0.0180 N/A Pie 0% V Considerations Resolved Yes Yes Yes Yes Yes	C4 BaF Well drained Non-Hydric 0.0122 N/A dmont Small Stres 0% Supp Ca Ca Ca Ca Ca	C4 BaF Well drained Non-Hydric 0.0120 N/A am 0% Porting Document ategorical Exclusivategorical Exclusivateg	C4 OaA Moderately well drained Hydric 0.0128 N/A 0% ation on on on on	
	Reach Sum Reach 1 317 VII 59.8 27.25 E4b: Incised, unstable & straight	Town Creek Resto Stanly 11.97 35.434 N, -80.242	Town Creek Restoration Project - Op	Town Creek Restoration Project - Option B Stanly 11.97 35.434 N, -80.2421 W roject Watershed Summary Information Piedmont Carolina Slate Belt Yadkin - Pee Dee 03040105 / 03040105060-040 03-07-13 134.8 <5% 2.01, 412 / Forest (40%) Agriculture (25%) Imperviou Lower Yadkin RBRP, 2009 Warm 100% No activity observed Reach Summary Information Reach 1 Reach 2 Reach 3 Reach 4 317 711 1,621 232 VII VII VII VII VII S9.8 77.8 115.6 119.4 27.25 27.25 - 32.0 32 32 C, Index #: 13-17-31-1-1 E4b: Incised, unstable & straight Straight C4: variable; unstable E4: Incised & unstable & straight Straight	

APPENDIX B

Visual Assessment Data

		Iorphology Stability Assessment								
	lestoration I	Project - Option B: Project No. 95026								
Reach ID		Town Creek - Reach 1								
Assessed Lengtl	ı (LF)	317	T	1	ı	Ī			E 4	
Major Channel Category	Channel Sub- Category	Metric	Number Stable, Performing as Intended	Total Number per As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Veg.	Footage with Stabilizing Woody Veg.	Adjusted % for Stabilizing Woody Veg.
	1. Vertical	1. Aggradation			0	0	100%			
	Stability	2. Degradation			0	0	100%			
1. Bed	2. Riffle Condition	1. Texture/Substrate	8	8			100%			
1. Deu	3. Pool	1. Depth	9	9]		100%			
	Condition	2. Length	9	9			100%			
	4.Thalweg	1. Thalweg centering for riffle/run	8	8			100%			
	position	2. Thalweg centering for pool/glide	9	9			100%			
	1. Scoured /Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	T	T	T		1		T	T		
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	12	12			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	10	10			100%			
3. Engineering Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms	10	10			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	12	12			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth	10	10			100%			

Table 5b. Visual Stream Morphology Stability Assessment										
		Project: Project No. 95026								
Reach ID		Town Creek - Reach 2								
Assessed Lengtl	h (LF)	711								
Major	Channel		Number Stable,	Total	Number of	Amount of	% Stable,	Number with	Footage with	Adjusted % for
Channel	Sub-	Metric	Performing	Number	Unstable	Unstable	Performing	Stabilizing	Stabilizing	Stabilizing
Category	Category		as Intended	per As-Built	Segments	Footage	as Intended	Woody Veg.	Woody Veg.	Woody Veg.
		1. Aggradation			0	0	100%			
	Stability	2. Degradation			0	0	100%			
	2. Riffle Condition	1. Texture/Substrate	21	21			100%			
1. Bed		1. Depth	20	20			100%			
	Condition	2. Length	20	20			100%			
	4. Thalweg	1. Thalweg centering for riffle/run	21	21			100%			
	position	2. Thalweg centering for pool/glide	20	20			100%			
	1. Scoured /Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears			0	0	100%	0	0	100%
	Ollucicut	likely								
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	.									
		Structures physically intact with no dislodged boulders or logs	20	20			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	20	20			100%			
3. Engineering Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms	20	20			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	20	20			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth	20	20			100%			

		orphology Stability Assessment								
Reach ID	Restoration Pr	roject: Project No. 95026 Town Creek - Reach 3								
Assessed Lengt	ь <i>(</i> Г.Б)	1,621								
Major Channel Category	Channel Sub- Category	Metric	Stable, Performing	Total Number per As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Veg.	Footage with Stabilizing Woody Veg.	Adjusted % for Stabilizing Woody Veg.
	1. Vertical	1. Aggradation			0	0	100%			
	Stability	2. Degradation			0	0	100%			
	2. Riffle Condition	1. Texture/Substrate	32	32			100%			
1. Bed	3. Pool	1. Depth	32	32			100%			
I. Dea	Condition	2. Length	32	32			100%			
	4. Thalweg	1. Thalweg centering for riffle/run	32	32			100%			
	position	2. Thalweg centering for pool/glide	32	32			100%			
	1					1				
	1. Scoured /Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	L a	Ia		<u> </u>		1		T		
	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs	66	66			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	15	15			100%			
3. Engineering Structures	2a. Piping	Structures lacking any substantial flow underneath sills or arms	15	15			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	66	66			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth	15	15			100%			

		Morphology Stability Assessment								
Town Creek F Reach ID		Project: Project No. 95026 Town Creek -Reach 4								
Assessed Lengt		10wn Creek - Reach 4 232								
Assessed Length		232								
Major	Channel		Number Stable,	Total	Number of	Amount of	% Stable,	Number with	Footage with	Adjusted % for
Channel	Sub-	Metric	Performing	Number	Unstable	Unstable	Performing	Stabilizing	Stabilizing	Stabilizing
Category	Category		as Intended	per As-Built	Segments	Footage	as Intended	Woody Veg.	Woody Veg.	Woody Veg.
	1. Vertical	1. Aggradation			0	0	100%			
	Stability	2. Degradation			0	0	100%			
1. Bed	2. Riffle Condition	1. Texture/Substrate	4	4			100%			
1. Deu	3. Pool	1. Depth	4	4			100%			
	Condition	2. Length	4	4			100%			
	4. Thalweg	1. Thalweg centering for riffle/run	4	4			100%			
	position	2. Thalweg centering for pool/glide	4	4			100%			
	1. Scoured /Eroding	Bank lacking vegetative cover								
		resulting simply from poor growth			0	0	100%	0	0	100%
		and/or scour and erosion								
	A 77 1	Banks undercut/overhanging to the			0	0	1000/	0	0	1000/
2. Bank	2. Undercut	extent that mass wasting appears likely			0	0	100%	0	0	100%
	3. Mass		-		0	0	1000/	0	0	1000/
	Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
	1		T							
		Structures physically intact with no	0	0			N/A			
	Integrity	dislodged boulders or logs								
	2. Grade	Grade control structures exhibiting	0	0			N/A			
	Control	maintenance of grade across the sill.	U	U			N/A			
3. Engineering		Structures lacking any substantial flow								
Structures	2a. Piping	underneath sills or arms	0	0			N/A			
	2 Dl-	Bank erosion within the structures								
	3. Bank Protection	extent of influence does not exceed	0	0			N/A			
	1 Potection	15%								
	4. Habitat	Pool forming structures maintaining ~	0	0			N/A			
	7. Havitat	Max Pool Depth	U	U			11/71			

Table 5e. Visus	al Stream Mo	rphology Stability Assessment								
Town Creek R		oject: Project No. 95026								
Reach ID		Town Creek -Reach 5								
Assessed Length	ı (LF)	822				1	ī			
Major Channel Category	Channel Sub- Category	Metric	Number Stable, Performing as Intended	Total Number per As-Built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Veg.	Footage with Stabilizing Woody Veg.	Adjusted % for Stabilizing Woody Veg.
	1. Vertical	1. Aggradation			0	0	100%			
	Stability	2. Degradation			0	0	100%			
1. Bed	2. Riffle Condition	1. Texture/Substrate	18	18			100%			
1. Deu	3. Pool	1. Depth	16	16			100%			
		2. Length	16	16			100%			
	_	1. Thalweg centering for riffle/run	18	18			100%			
	position	2. Thalweg centering for pool/glide	16	16			100%			
							T		T	
	1. Scoured/ Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
2. Bank		Banks undercut/overhanging to the extent that mass wasting appears likely			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
		Structures physically intact with no dislodged boulders or logs	31	31			100%			
		Grade control structures exhibiting maintenance of grade across the sill.	5	5			100%			
3. Engineering Structures	1/9 Pining	Structures lacking any substantial flow underneath sills or arms	5	5			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does not exceed 15%	31	31			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth	5	5			100%			

Table 5f. Stream Prob	olem Areas		
Town Creek Restorati	on Project: Project	No. 95026	
		Town Creek Reach 1	
Feature Issue	Station No.	Suspected Cause	Photo Number
No issues in Year 1	N/A	N/A	N/A
		Town Creek Reach 2	
Feature Issue	Station No.	Suspected Cause	Photo Number
No issues in Year 1	N/A	N/A	N/A
		Town Creek Reach 3	
Feature Issue	Station No.	Suspected Cause	Photo Number
No issues in Year 1	N/A	N/A	N/A
		Town Creek Reach 4	
Feature Issue	Station No.	Suspected Cause	Photo Number
No issues in Year 1	N/A	N/A	N/A
		Town Creek Reach 5	
Feature Issue	Station No.	Suspected Cause	Photo Number
No issues in Year 1	N/A	N/A	N/A

Note: The first digit in the Photo Number column references the monitoring year and the second digit references the problem area or photo (which would be identical to a prior years problem area/photo number when persisting from a previous monitoring year).

Table 6a. Vegetation Condition	Assessment									
Town Creek Restoration Project: Project No. 95026										
Reach ID	Reaches 1 - 5									
Planted Acreage	10.73									
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage				
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	N/A	0	0.00	0.0%				
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	N/A	0	0.00	0.0%				
			Total	0	0.00	0.0%				
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	N/A	0	0.00	0.0%				
		Cum	ulative Total	0	0.00	0.0%				
Easement Acreage	11.97									
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage				
4. Invasive Areas of Concern	Areas or points (if too small to render as polygons at map scale).	1000 SF	NA	0	0.00	0.0%				
5. Easement Encroachment Areas	Areas or points (if too small to render as polygons at map scale).	N/A	N/A	0	0.00	0.0%				

Reach 1						
Feature Issue	Station No.	Suspected Cause	Photo Number			
Invasive/Exotic Populations	N/A	N/A	-			
1 opulations	<u> </u>	Reach 2				
Feature Issue	Station No.	Suspected Cause	Photo Number			
Invasive/Exotic Populations	N/A	N/A	-			
•	•	Reach 3				
Feature Issue	Station No.	Suspected Cause	Photo Number			
Invasive/Exotic Populations	N/A	N/A	-			
•	•	Reach 4				
Feature Issue	Station No.	Suspected Cause	Photo Number			
Invasive/Exotic Populations	N/A	N/A	-			
•	•	Reach 5	•			
Feature Issue	Station No.	Suspected Cause	Photo Number			
Invasive/Exotic Populations	N/A	N/A	-			

*Note: The first digit in the Photo Number column references the monitoring year and the second digit references the problem area or photo (which would be identical to a prior years problem area/photo number when persisting from a previous monitoring year).

PID 1: Station 10+40 – Upstream (10/12/16)

PID 2: Station 10+60 – Downstream (10/12/16)

PID 3: Station10+70 – Left Floodplain Rock Lined Channel (10/12/16)

PID 4: Station 11+25 – Downstream (10/12/16)

PID 5: Station 12+20 – Downstream (10/12/16)

PID 6: Station 13+60 – Upstream (10/12/16)

PID 7: Station 13+75 – Downstream (10/12/16)

PID 9: Station 14+65 – Downstream (10/12/16)

PID 8: Station 14+65 – Left Floodplain Matted Drainage Swale (10/12/16)

PID 10: Station 16+15 – Upstream (10/12/16)

PID 12: Station 17+75 – Upstream (10/12/16)

PID 11: Station 16+90 – Upstream (10/12/16)

PID 13: Station 18+75 – Upstream (10/12/16)

PID 14: Station 19+25 – Upstream (10/12/16)

PID 15: Station 20+50 – Downstream (10/12/16)

PID 16: Station 20+70 – Upstream (10/12/16)

PID 17: Station 21+75 – Upstream (10/12/16)

PID 18: Station 23+30 – Upstream (10/12/16)

PID 19: Station 23+60 – Upstream (10/12/16)

PID 20: Station 23+60 – Left Bank (10/12/16)

PID 21: Station 24+50 – Upstream (10/12/16)

PID 22: Station 25+50 – Upstream (10/12/16)

PID 23: Station 27+50 – Upstream (10/12/16)

PID 24: Station 28+10 – Upstream (10/12/16)

PID 25: Station 28+35 – Right Floodplain Rock Lined Channel (10/12/16)

PID 26: Station 28+90 – Upstream (10/12/16)

PID 27: Station 29+80 – Downstream (10/12/16)

PID 28: Station 31+40 – Upstream (10/12/16)

PID 29: Station 33+00 – Upstream (10/12/16)

PID 30: Station 33+45 – Downstream (10/12/16)

PID 31: Station 35+50 – Upstream (10/12/16)

PID 32: Station 36+90 – Upstream (10/12/16)

PID 33: Station 37+15–Downstream (10/12/16)

PID 34: Station 39+05 – Upstream (10/12/16)

PID 35: Station 42+00 – Downstream (10/12/16)

PID 36: Station 43+25 – Downstream (10/12/16)

PID 37: Station 44+25 – Downstream (10/12/16)

PID 38: Station 45+30 Downstream (10/12/16)

PID 39: Station 45+50 – Upstream (10/12/16)

PID 40: Station 46+90 – Upstream (10/12/16)

PID 41: Station 47+00 – Right Floodplain Rock Lined Channel from Wetland (10/12/16)

PID 42: Station 47+75 – Upstream (10/12/16)

PID 43: Station 48+05 – Downstream (10/12/16)

APPENDIX C

Vegetation Plot Data

Table 7. Vegetation Plot Criteria Attainment

Town Creek Restoration Project: Project No. 95026

Wetland/Stream Vegetation Totals (per	er acre)	
---------------------------------------	----------	--

Stream / Wotland													
Plot #	Stream/ Wetland Stems ¹	Volunteers ²	Total ³	Success Criteria Met?									
VP1	728	0	728	Yes									
VP2	850	0	850	Yes									
VP3	769	0	769	Yes									
VP4	769	0	769	Yes									
VP5	850	0	850	Yes									
VP6	728	0	728	Yes									
VP7	688	0	688	Yes									
VP8	647	0	647	Yes									
Project Avg	754	0	754	Yes									

Native planted woody stems. Includes shrubs, does NOT include live stakes. No vines

²Native woody stems. Not planted. No vines.

³Planted + volunteer native woody stems. Includes live stakes. Excl. exotics. Excl. vines.

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Table 8. CVS Vegetation Plot Metadata

Town Creek Restoration Project: Project No. 95026

Report Prepared By

Date Prepared

Russell Myers
11/18/2016 10:16

 database name
 124526_TownCreek_cvs-eep-entrytool-v2.3.1.mdb

 database location
 C:\Users\Russell.Myers\Desktop\UT and Town CVS

computer name ASHELCTOMSIC file size 58146816

DESCRIPTION OF WORKSHEETS IN THIS DOCUMENT-----

Metadata Description of database file, the report worksheets, and a summary of project(s) and project data.

Proj, planted Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.

Proj. total stems Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted stems, and all natural/volunteer stems.

Plots List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).

VigorFrequency distribution of vigor classes for stems for all plots.Vigor by SppFrequency distribution of vigor classes listed by species.

Damage List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.

Damage by SppDamage values tallied by type for each species.Damage by PlotDamage values tallied by type for each plot.

Planted Stems by Plot and Spp A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are excluded.

ALL Stems by Plot and spp A matrix of the count of total living stems of each species (planted and natural volunteers combined) for each plot; dead and missing stems are excluded.

PROJECT SUMMARY-----Project Code 95026

project Name Town Creek Restoration Project - Option B

Description

River Basin Yadkin-Pee Dee

length(ft)

stream-to-edge width (ft)

area (sq m)

Required Plots (calculated)

Sampled Plots 8

Table 9. CVS Stem Count of Planted Stems by Plot and Species

Town Creek Restoration Project: Project No. 95026

			Current Plot Data (MY1 2016)														
C - : 4 : C - N	Garage Name	Species	9:	5026-01-VI	P1	9:	5026-01-VI	22	9:	5026-01-VI	23	95	5026-01-VF	P 4	9:	5026-01-VI	25
Scientific Name	Common Name	Type	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T
Asimina triloba	pawpaw	Tree															
Betula nigra	river birch	Tree	2	2	2							1	1	1			
Callicarpa americana	American beautyberry	Shrub				2	2	2									
Carpinus caroliniana	American hornbeam	Tree							2	2	2						
Cercis canadensis	eastern redbud	Tree													7	7	7
Cornus amomum	silky dogwood	Shrub				4	4	4	5	5	5	2	2	2	2	2	2
Diospyros virginiana	common persimmon	Tree							4	4	4						
Fraxinus pennsylvanica	green ash	Tree	1	1	1												
Liriodendron tulipifera	tuliptree	Tree	3	3	3	3	3	3	3	3	3				5	5	5
Platanus occidentalis	American sycamore	Tree	2	2	2												
Quercus alba	white oak	Tree	1	1	1	1	1	1							2	2	2
Quercus falcata	southern red oak	Tree	1	1	1	1	1	1									
Quercus michauxii	swamp chestnut oak	Tree				2	2	2				2	2	2			
Quercus pagoda	cherrybark oak	Tree	1	1	1	1	1	1	2	2	2	3	3	3			
Quercus phellos	willow oak	Tree	6	6	6	7	7	7	3	3	3	11	11	11	5	5	5
Sambucus canadensis	Common Elderberry	Shrub	1	1	1												
Sambucus nigra	European black elderberry	Shrub															
		Stem count	18	18	18	21	21	21	19	19	19	19	19	19	21	21	21
	size (ares)			1	·		1			1	·		1			1	
	size (ACRES)			0.02			0.02			0.02			0.02			0.02	
	Species count			9	9	8	8	8	6	6	6	5	5	5	5	5	5
	Ste	Stems per ACRE		728	728	850	850	850	769	769	769	769	769	769	850	850	850

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Table 9. CVS Stem Count of Planted Stems by Plot and Species

Town Creek Restoration Project: Project No. 95026

						Current P	lot Data (N	MY1 2016)						Annua	l Means		
Coiontifia Nama	Common Nama	Species	9:	5026-01-V	P6	9:	5026-01-VI	27	9:	5026-01-VI	28	Ι	MY1 (2016))		MY0 (2016)
Scientific Name	Common Name	Type	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T	PnoLS	P-all	T
Asimina triloba	pawpaw	Tree	1	1	1							1	1	1	1	1	1
Betula nigra	river birch	Tree	1	1	1				4	4	4	8	8	8	12	12	12
Callicarpa americana	American beautyberry	Shrub										2	2	2	1	1	1
Carpinus caroliniana	American hornbeam	Tree	1	1	1							3	3	3	1	1	1
Cercis canadensis	eastern redbud	Tree	4	4	4							11	11	11	11	11	11
Cornus amomum	silky dogwood	Shrub										13	13	13	14	14	14
Diospyros virginiana	common persimmon	Tree										4	4	4	4	4	4
Fraxinus pennsylvanica	green ash	Tree				1	1	1				2	2	2	2	2	2
Liriodendron tulipifera	tuliptree	Tree	1	1	1	6	6	6	5	5	5	26	26	26	27	27	27
Platanus occidentalis	American sycamore	Tree				5	5	5	6	6	6	13	13	13	14	14	14
Quercus alba	white oak	Tree										4	4	4	3	3	3
Quercus falcata	southern red oak	Tree										2	2	2	5	5	5
Quercus michauxii	swamp chestnut oak	Tree	4	4	4							8	8	8	9	9	9
Quercus pagoda	cherrybark oak	Tree				1	1	1				8	8	8	6	6	6
Quercus phellos	willow oak	Tree	6	6	6	4	4	4	1	1	1	43	43	43	47	47	47
Sambucus canadensis	Common Elderberry	Shrub										1	1	1			
Sambucus nigra	European black elderberry	Shrub													2	2	2
		Stem count	18	18	18	17	17	17	16	16	16	149	149	149	159	159	159
	size (ares			1			1			1			8			8	
	size (ACRES)			0.02			0.02			0.02			0.20			0.20	
	Species count		7	7	7	5	5	5	4	4	4	16	16	16	16	16	16
	Ster	Stems per ACRE		728	728	688	688	688	647	647	647	754	754	754	804	804	804

Color for Density

Exceeds requirements by 10%

Exceeds requirements, but by less than 10%

Fails to meet requirements, by less than 10%

Fails to meet requirements by more than 10%

Town Creek - Vegetation Plot Photos

Vegetation Plot 1 (10/12/16)

Vegetation Plot 2 (10/12/16)

Vegetation Plot 3 (10/12/16)

Vegetation Plot 4 (10/12/16)

Vegetation Plot 5 (10/12/16)

Vegetation Plot 6 (10/12/16)

Vegetation Plot 7 (10/12/2016)

Vegetation Plot 8 (10/12/2016)

APPENDIX D

Stream Survey Data

Figure 3. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

X1 - Reach 2 (Monitoring Year 1 - Collected November 2016)

LEFT BANK RIGHT BANK

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA
Riffle	С	4.80	8.46	0.57	0.96	14.92	1.06	3.02	586.35	586.41	25.55

MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 95026 TOWN CREEK RESTORATION PROJECT - OPTION B YEAR 1 MONITORING REPORT - 2017, YEAR 1 OF 5

Figure 3 Cont. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

X2 - Reach 2 (Monitoring Year 1 - Collected November 2016)

LEFT BANK

RIGHT BANK

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA
Riffle	С	7.66	9.13	0.84	1.34	10.88	1.01	3.62	583.31	583.32	33.03

Figure 3 Cont. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

X3 - Reach 2

(Monitoring Year 1 - Collected November 2016)

LEFT BANK

RIGHT BANK

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA	
Pool		9.99	8.73	1.14	2.00	7.62	1.00	4.25	582.09	582.09	37.11	l

MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 95026 TOWN CREEK RESTORATION PROJECT - OPTION B YEAR 1 MONITORING REPORT - 2017, YEAR 1 OF 5

Figure 3 Cont. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

Permanent Cross-section X4 - Reach 2 (Monitoring Year 1- Collected November 2016)

LEFT BANK

RIGHT BANK

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA
Riffle	С	7.00	9.91	0.71	1.32	14.05	1.05	3.84	576.81	576.88	38.11

Figure 3 Cont. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

Permanent Cross-section X5 - Reach 3 (Monitoring Year 1 - Collected November 2016)

LEFT BANK RIGHT BANK

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA
Riffle	С	8.11	11.83	0.69	1.35	17.27	1.09	4.06	568.85	568.98	48.09

Figure 3 Cont. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

Permanent Cross-section X6 - Reach 3 (Monitoring Year 1- Collected November 2016)

LEFT BANK

RIGHT BANK

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA
Pool		13.03	19.31	0.67	1.79	28.61	0.99	2.56	568.63	568.61	49.44

Figure 3 Cont. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

Permanent Cross-section X7 - Reach 3 (Monitoring Year 1 - Collected November 2016)

LEFT BANK

RIGHT BANK

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA
Riffle	С	5.71	10.72	0.53	0.85	20.15	0.98	3.59	563.96	563.94	0.00

Figure 3 Cont. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

Permanent Cross-section X8 - Reach 3 (Monitoring Year 1 - Collected November 2016)

LEFT BANK

RIGHT BANK

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA	
Pool		12.46	12.08	1.03	1.98	11.72	1.03	4.18	555.44	555.49	50.46	l

Figure 3 Cont. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

Permanent Cross-section X9 - Reach 3 (Monitoring Year 1 - Collected November 2016)

LEFT BANK

RIGHT BANK

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA
Riffle	С	5.34	10.04	0.53	0.80	18.85	0.97	3.12	555.19	555.17	31.28

MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 95026 TOWN CREEK RESTORATION PROJECT - OPTION B YEAR 1 MONITORING REPORT - 2017, YEAR 1 OF 5

Figure 3 Cont. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

Permanent Cross-section X10 - Reach 5 (Monitoring Year 1 - Collected November 2016)

LEFT BANK

RIGHT BANK

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA
Riffle	С	7.21	10.28	0.70	1.10	14.65	0.99	5.74	550.83	550.82	59.03

Figure 3 Cont. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

X11 - Reach 5

(Monitoring Year 1 - Collected November 2016)

LEFT BANK

RIGHT BANK

]	Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA	
	Pool		16.97	16.78	1.01	2.11	16.60	0.97	3.79	549.52	549.58	63.56	

Figure 3 Cont. Cross-sections with Annual Overlays Town Creek Restoration Project: Project No. 95026

X12 - Reach 5

(Monitoring Year 1 - Collected November 2016)

LEFT BANK

RIGHT BANK

Feature	Stream Type	BKF Area	BKF Width	BKF Depth	Max BKF Depth	W/D	BH Ratio	ER	BKF Elev	TOB Elev	WFPA
Riffle	С	5.53	10.49	0.53	0.8	19.92	1	3.85	549.04	549.04	40.39

Figure 4. Riffle Pebble Count Size Class Distribution with Annual Overlays Town Creek Restoration Project: Project No. 95026

			BAKER PROJECT NO.	124526					
SITE OR PROJECT:		Town Creek Stream Restoration Project - Monitoring Year 1							
REACH/LOCATION:		Town Creek - Reach 2, XS 1							
DATE COLLEC	CTED:	10/11/2016							
FIELD COLLEC	CTION BY:	Russell Myer	s and Andrew Powers						
DATA ENTRY	BY:	Russell Myer	s						
			PARTICLE CLASS COUNT	Sumr	mary				
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum				
SILT/CLAY	Silt / Clay	< .063	12	12%	12%				
•	Very Fine	.063125	0	0%	12%				
	Fine	.12525	0	0%	12%				
SAND	Medium	.2550	0	0%	12%				
OAND	Coarse	.50 - 1.0	0	0%	12%				
	Very Coarse	1.0 - 2.0	0	0%	12%				
	Very Fine	2.0 - 2.8	0	0%	12%				
	Very Fine	2.8 - 4.0	2	2%	14%				
	Fine	4.0 - 5.6	3	3%	17%				
	Fine	5.6 - 8.0	4	4%	21%				
	Medium	8.0 - 11.0	6	6%	27%				
GRAVEL	Medium	11.0 - 16.0	7	7%	34%				
	Coarse	16.0 - 22.6	8	8%	42%				
	Coarse	22.6 - 32	13	13%	55%				
	Very Coarse	32 - 45	16	16%	71%				
	Very Coarse	45 - 64	18	18%	89%				
	Small	64 - 90	11	11%	100%				
	Small	90 - 128	0	0%	100%				
COBBLE	Large	128 - 180	0	0%	100%				
	Large	180 - 256	0	0%	100%				
_	Small	256 - 362	0	0%	100%				
	Small	362 - 512	0	0%	100%				
BOULDER	Medium	512 - 1024	0	0%	100%				
	Large-Very Large	1024 - 2048	0	0%	100%				
BEDROCK	Bedrock	> 2048	0	0%	100%				
		Total	100	100%	100%				

	Cummulative					
Channel mat	Channel materials (mm)					
D ₁₆ =	5.01					
$D_{35} =$	16.71					
$D_{50} =$	27.99					
D ₈₄ =	58.03					
D ₉₅ =	77.08					
D ₁₀₀ =	64 - 90					

Figure 4 Cont. Riffle Pebble Count Size Class Distribution with Annual Overlays Town Creek Restoration Project: Project No. 95026

			BAKER PROJECT NO.	124526					
SITE OR PRO	JECT:	Town Creek Stream Restoration Project - Monitoring Year 1							
REACH/LOCA	TION:	Town Creek - Reach 2, XS 4							
DATE COLLEC	CTED:	10/11/2016							
FIELD COLLEC	CTION BY:	Russell Myers	s and Andrew Powers						
DATA ENTRY	BY:	Russell Myers	s						
			PARTICLE CLASS COUNT	Sumr					
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum				
SILT/CLAY	Silt / Clay	< .063	18	18%	18%				
	Very Fine	.063125	0	0%	18%				
	Fine	.12525	0	0%	18%				
SAND	Medium	.2550	1	1%	19%				
	Coarse	.50 - 1.0	1	1%	20%				
	Very Coarse	1.0 - 2.0	0	0%	20%				
	Very Fine	2.0 - 2.8	0	0%	20%				
	Very Fine	2.8 - 4.0	0	0%	20%				
	Fine	4.0 - 5.6	2	2%	22%				
	Fine	5.6 - 8.0	11	11%	33%				
	Medium	8.0 - 11.0	0	0%	33%				
GRAVEL	Medium	11.0 - 16.0	5	5%	38%				
	Coarse	16.0 - 22.6	10	10%	48%				
	Coarse	22.6 - 32	8	8%	56%				
	Very Coarse	32 - 45	8	8%	64%				
	Very Coarse	45 - 64	10	10%	74%				
	Small	64 - 90	16	16%	90%				
	Small	90 - 128	5	5%	95%				
COBBLE	Large	128 - 180	5	5%	100%				
	Large	180 - 256	0	0%	100%				
	Small	256 - 362	0	0%	100%				
	Small	362 - 512	0	0%	100%				
BOULDER	Medium	512 - 1024	0	0%	100%				
	Large-Very Large	1024 - 2048	0	0%	100%				
BEDROCK	Bedrock	> 2048	0	0%	100%				
=== 00 11		Total	100	100%	100%				

Cummulative						
Channel materials (mm)						
D ₁₆ =	<0.063					
D ₃₅ =	12.78					
D ₅₀ =	24.65					
D ₈₄ =	79.20					
D ₉₅ =	128.00					
D ₁₀₀ =	128 - 180					

Figure 4 Cont. Riffle Pebble Count Size Class Distribution with Annual Overlays Town Creek Restoration Project: Project No. 95026

			BAKER PROJECT NO.	124526					
SITE OR PRO	JECT:	Town Creek S	Stream Restoration Project - Monito	oring Year 1					
REACH/LOCAT	TION:	Town Creek - Reach 3, XS 5							
DATE COLLEC	CTED:	10/12/2016							
FIELD COLLEC	CTION BY:	Russell Myers and Andrew Powers							
DATA ENTRY I	BY:	Russell Myers							
			PARTICLE CLASS COUNT	Sumr					
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum				
SILT/CLAY	Silt / Clay	< .063	8	8%	8%				
	Very Fine	.063125	0	0%	8%				
	Fine	.12525	1	1%	9%				
SAND	Medium	.2550	0	0%	9%				
	Coarse	.50 - 1.0	0	0%	9%				
	Very Coarse	1.0 - 2.0	0	0%	9%				
	Very Fine	2.0 - 2.8	0	0%	9%				
	Very Fine	2.8 - 4.0	2	2%	11%				
	Fine	4.0 - 5.6	2	2%	13%				
	Fine	5.6 - 8.0	1	1%	13%				
	Medium	8.0 - 11.0	8	8%	21%				
GRAVEL	Medium	11.0 - 16.0	10	10%	31%				
	Coarse	16.0 - 22.6	6	6%	37%				
	Coarse	22.6 - 32	10	10%	46%				
	Very Coarse	32 - 45	9	9%	55%				
	Very Coarse	45 - 64	12	12%	66%				
	Small	64 - 90	14	13%	80%				
	Small	90 - 128	10	10%	89%				
COBBLE	Large	128 - 180	9	9%	98%				
	Large	180 - 256	1	1%	99%				
	Small	256 - 362	0	0%	99%				
	Small	362 - 512	1	1%	100%				
BOULDER	Medium	512 - 1024	0	0%	100%				
	Large-Very Large	1024 - 2048	0	0%	100%				
BEDROCK	Bedrock	> 2048	0	0%	100%				
		Total	104	100%	100%				

Cummulative						
Channel materials (mm)						
D ₁₆ =	8.89					
$D_{35} =$	20.61					
D ₅₀ =	37.24					
D ₈₄ =	104.94					
D ₉₅ =	159.45					
D ₁₀₀ =	362 - 512					

Figure 4 Cont. Riffle Pebble Count Size Class Distribution with Annual Overlays Town Creek Restoration Project: Project No. 95026

		ĺ	BAKER PROJECT NO.	124526	
SITE OR PRO	JECT:	Town Creek S	Stream Restoration Project - Moni	toring Year 1	
REACH/LOCA	TION:		- Reach 3, XS 7	8	
DATE COLLEC	CTED:	10/12/2016	,		
FIELD COLLEC	CTION BY:	Russell Myers	s and Andrew Powers		
DATA ENTRY	BY:	Russell Myers	s		
			PARTICLE CLASS COUNT	Sumi	
MATERIAL	PARTICLE	SIZE (mm)	Riffle	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	8	8%	8%
	Very Fine	.063125	0	0%	8%
	Fine	.12525	2	2%	10%
SAND	Medium	.2550	3	3%	13%
	Coarse	.50 - 1.0	0	0%	13%
	Very Coarse	1.0 - 2.0	0	0%	13%
	Very Fine	2.0 - 2.8	0	0%	13%
	Very Fine	2.8 - 4.0	0	0%	13%
	Fine	4.0 - 5.6	3	3%	16%
	Fine	5.6 - 8.0	6	6%	22%
	Medium	8.0 - 11.0	8	8%	30%
GRAVEL	Medium	11.0 - 16.0	4	4%	34%
	Coarse	16.0 - 22.6	7	7%	41%
	Coarse	22.6 - 32	8	8%	49%
	Very Coarse	32 - 45	13	13%	62%
	Very Coarse	45 - 64	9	9%	71%
	Small	64 - 90	15	15%	86%
	Small	90 - 128	11	11%	97%
COBBLE	Large	128 - 180	2	2%	99%
	Large	180 - 256	1	1%	100%
	Small	256 - 362	0	0%	100%
	Small	362 - 512	0	0%	100%
BOULDER	Medium	512 - 1024	0	0%	100%
	Large-Very Large	1024 - 2048	0	0%	100%
BEDROCK	Bedrock	> 2048	0	0%	100%
		Total	100	100%	100%

Cummulative						
Channel materials (mm)						
D ₁₆ =	5.60					
$D_{35} =$	16.81					
D ₅₀ =	32.85					
D ₈₄ =	86.00					
D ₉₅ =	120.06					
D ₁₀₀ =	180 - 256					

Figure 4 Cont. Riffle Pebble Count Size Class Distribution with Annual Overlays Town Creek Restoration Project: Project No. 95026

			BAKER PROJECT NO.	124526	
SITE OR PRO	JECT:	Town Creek S	Stream Restoration Project - Monito	oring Year 1	
REACH/LOCAT	ΓΙΟΝ:	Town Creek -	Reach 3, XS 9		
DATE COLLEC	TED:	10/12/2016			
FIELD COLLEC	CTION BY:	Russell Myers	s and Andrew Powers		
DATA ENTRY	BY:	Russell Myers	s		
			PARTICLE CLASS COUNT	Sumr	
MATERIAL	PARTICLE	SIZE (mm)	Riffle 4	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063	•	4%	4%
	Very Fine	.063125	0	0%	4%
	Fine	.12525	0	0%	4%
SAND	Medium	.2550	1	1%	5%
	Coarse	.50 - 1.0	0	0%	5%
	Very Coarse	1.0 - 2.0	0	0%	5%
	Very Fine	2.0 - 2.8	0	0%	5%
	Very Fine	2.8 - 4.0	0	0%	5%
	Fine	4.0 - 5.6	2	2%	7%
	Fine	5.6 - 8.0	2	2%	9%
	Medium	8.0 - 11.0	9	9%	18%
GRAVEL	Medium	11.0 - 16.0	14	14%	32%
	Coarse	16.0 - 22.6	12	12%	44%
	Coarse	22.6 - 32	6	6%	50%
	Very Coarse	32 - 45	11	11%	61%
	Very Coarse	45 - 64	12	12%	73%
	Small	64 - 90	10	10%	83%
	Small	90 - 128	9	9%	92%
COBBLE	Large	128 - 180	7	7%	99%
	Large	180 - 256	1	1%	100%
	Small	256 - 362	0	0%	100%
	Small	362 - 512	0	0%	100%
BOULDER	Medium	512 - 1024	0	0%	100%
	Large-Very Large	1024 - 2048	0	0%	100%
BEDROCK	Bedrock	> 2048	0	0%	100%
DED. COR		Total	100	100%	100%

Cumi	mulative
Channel ma	terials (mm)
D ₁₆ =	10.25
D ₃₅ =	17.44
D ₅₀ =	32.00
D ₈₄ =	93.59
D ₉₅ =	148.14
D ₁₀₀ =	180 - 256

Particle Size Class (mm)

MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 95026 TOWN CREEK RESTORATION PROJECT - OPTION B YEAR 1 MONITORING REPORT - 2017, YEAR 1 OF 5

Figure 4 Cont. Riffle Pebble Count Size Class Distribution with Annual Overlays Town Creek Restoration Project: Project No. 95026

			BAKER PROJECT NO.	124526	
SITE OR PRO	JECT:	Town Creek S	Stream Restoration Project - Monito	oring Year 1	
REACH/LOCAT	TION:	Town Creek -	• Reach 5, XS 10		
DATE COLLEC	CTED:	10/12/2016			
FIELD COLLEC	CTION BY:	Russell Myers	s and Andrew Powers		
DATA ENTRY	BY:	Russell Myers			
		· ·	PARTICLE CLASS COUNT	Sumr	
MATERIAL	PARTICLE	SIZE (mm)	Riffle 5	Class %	% Cum
SILT/CLAY	Silt / Clay	< .063		5%	5%
	Very Fine	.063125	0	0%	5%
	Fine	.12525	0	0%	5%
SAND	Medium	.2550	0	0%	5%
	Coarse	.50 - 1.0	2	2%	7%
	Very Coarse	1.0 - 2.0	0	0%	7%
	Very Fine	2.0 - 2.8	0	0%	7%
	Very Fine	2.8 - 4.0	2	2%	9%
	Fine	4.0 - 5.6	4	4%	13%
	Fine	5.6 - 8.0	6	6%	19%
	Medium	8.0 - 11.0	8	8%	27%
GRAVEL	Medium	11.0 - 16.0	12	12%	39%
	Coarse	16.0 - 22.6	16	16%	55%
	Coarse	22.6 - 32	10	10%	65%
	Very Coarse	32 - 45	8	8%	73%
	Very Coarse	45 - 64	12	12%	85%
	Small	64 - 90	6	6%	91%
	Small	90 - 128	5	5%	96%
COBBLE	Large	128 - 180	3	3%	99%
	Large	180 - 256	1	1%	100%
	Small	256 - 362	0	0%	100%
	Small	362 - 512	0	0%	100%
BOULDER	Medium	512 - 1024	0	0%	100%
	Large-Very Large	1024 - 2048	0	0%	100%
BEDROCK	Bedrock	> 2048	0	0%	100%
		Total	100	100%	100%

	nulative
Channel mar	terials (mm)
D ₁₆ =	6.69
$D_{35} =$	14.12
D ₅₀ =	20.29
D ₈₄ =	62.15
D ₉₅ =	119.29
D ₁₀₀ =	180 - 256

Figure 4 Cont. Riffle Pebble Count Size Class Distribution with Annual Overlays Town Creek Restoration Project: Project No. 95026

REACH/LOCATION: To	Γ	BAKER PROJECT NO.	124526	
DATE COLLECTED: 10/ FIELD COLLECTION BY: Ru DATA ENTRY BY: Ru MATERIAL	wn Creek S	tream Restoration Project - Monito	oring Year 1	
Name	wn Creek -	Reach 5, XS 12		
MATERIAL	/12/2016			
MATERIAL	ıssell Myers	and Andrew Powers		
SILT/CLAY Silt / Clay	ıssell Myers			
SILT/CLAY Silt / Clay		PARTICLE CLASS COUNT	Sumr	
Very Fine	SIZE (mm)	Riffle	Class %	% Cum
Fine Medium Coarse Very Coarse Very Fine Very Fine Fine Fine Fine Fine Medium Medium Medium Coarse Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small	< .063	2	2%	2%
Medium Coarse Very Coarse Very Coarse Very Fine Very Fine Very Fine Fine Fine Medium 1 Coarse 1 Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Small Small Large Large Large Small Small Small Large-Very Large 1	.063125	0	0%	2%
Coarse Very Coarse	.12525	0	0%	2%
Very Coarse	.2550	0	0%	2%
Very Fine Very Fine Very Fine Fine Fine Medium 1 Coarse 1 Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Small Small Earge E	.50 - 1.0	0	0%	2%
Very Fine Fine Fine Medium Medium 1 Coarse 1 Coarse Very Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small	1.0 - 2.0	0	0%	2%
Fine Fine Fine Fine Medium 1	2.0 - 2.8	0	0%	2%
Fine Medium 1	2.8 - 4.0	0	0%	2%
Medium	4.0 - 5.6	1	1%	3%
GRAVEL Medium 1 Coarse 1 Coarse 1 Very Coarse 1 Very Coarse 1 Small 1 Small 1 Large 1 Large 1 Small 2 Large 3 Large 4 Large 4 Large 4 Large-Very Large 1	5.6 - 8.0	6	6%	9%
Coarse 1 Coarse Very Coarse Very Coarse Very Coarse Very Coarse Small Small Large Large Small	8.0 - 11.0	10	10%	18%
Coarse Very Coarse Very Coarse Very Coarse Small Small Large Large Small Small Small Small Small Small Large Large	11.0 - 16.0	13	12%	30%
Very Coarse Very Coarse Small Small Large Large Small Small Small Small Large Large Large Large Large Large Large Large Large Large-Very Large 1	16.0 - 22.6	13	12%	43%
Very Coarse	22.6 - 32	20	19%	62%
Small Small Small Small Large Large Small Small Small Small Small Small Large-Very Large 1	32 - 45	18	17%	79%
Small Large Large Large Large Small Small Small Small Small Large-Very Large 1	45 - 64	12	11%	90%
COBBLE Large Large Small Small Small Large-Very Large 1	64 - 90	3	3%	93%
Large Small Smal	90 - 128	1	1%	94%
Large Small Small Small Small Large-Very Large 1	128 - 180	5	5%	99%
Small Smal	180 - 256	1	1%	100%
Small	256 - 362	0	0%	100%
BOULDER Medium 5 Large-Very Large 1	362 - 512	0	0%	100%
Large-Very Large 1	512 - 1024	0	0%	100%
	024 - 2048	0	0%	100%
	> 2048	0	0%	100%
<u> </u>	Total	105	100%	100%

	nulative
Channel mat	terials (mm)
D ₁₆ =	10.26
$D_{35} =$	18.15
D ₅₀ =	25.75
D ₈₄ =	52.42
D ₉₅ =	134.72
D ₁₀₀ =	180 - 256

Town Creek Restoration Project - Option B: DMS Project ID Reach 1 (317 LF)	No. 95026																					
Parameter	USGS		onal Curve I				Pre-Exi	sting Condition					De	sign					Monitoring Ba	seline (As-built)		
Dimension and Substrate - Riffle	Gauge		rman et al, 1		Min	Mass	Med	-	SD		Min	Maan	Med		CD		Min				CD	
BF Width (ft)		LL 23.0	UL 80.0	Eq. 4.2	Min 5.5	Mean	Med 	Max 7.2	2D	n 2	Min	Mean 9.0	Med 	Max	SD	n		Mean	Med	Max 	SD	n
Floodprone Width (ft)				4.2	72.1			76.6		2	20			50								
BF Mean Depth (ft)		2.3	5.8	0.7	0.8			1.1		2		0.68		50								
BF Max Depth (ft)		2.3	J.0	0.7	1.8			2.3		2		0.00										
BF Cross-sectional Area (ft²)		80.0	300.0	4.2	5.4			5.9		2		6.1										
Width/Depth Ratio				4.2	5.22			9.43		2		13.3										
Entrenchment Ratio					10.1			13.8		2		13.3		>2.2								
Bank Height Ratio					1.3			1.5		2		1		>2.2								
d50 (mm)										1		1										
` /						6.9				1												
Pattern Cl. 1 P. 1 111 (6)																						
Channel Beltwidth (ft)																						
Radius of Curvature (ft)																						
Rc:Bankfull width (ft/ft)																						
Meander Wavelength (ft)			0.0																			
Meander Width Ratio																						
Profile																						
Riffle Length (ft)																						
Riffle Slope (ft/ft)												0.022						0.012				8
Pool Length (ft)																						
Pool Spacing (ft)											14.0			45.0			12.0			42.0		11
Pool Max Depth (ft)											1.4			2.4			0.2			0.8		11
Pool Volume (ft ³)																						
Substrate and Transport Parameters																						
Ri% / Ru% / P% / G% / S%																						
SC% / Sa% / G% / B% / Be%																						
d16 / d35 / d50 / d84 / d95							0.2 / 4.3	/ 6.9 / 30.8 / 54.5														
Reach Shear Stress (competency) lb/f ²																						
Max part size (mm) mobilized at bankfull (Rosgen Curve)																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters																						
								0.00				0.00						0.00				
Drainage Area (SM)								0.09				0.09						0.09				
Impervious cover estimate (%)																						
Rosgen Classification								E4b (incised)				C4						C4				
BF Velocity (fps)								2.76				2.72										
BF Discharge (cfs)		290.0	2000.0	15.6				16.3				16.3										
Valley Length																		301.9				
Channel length (ft) ²								363				316						317.0				
Sinuosity								1.17				1.02						1.1				
Water Surface Slope (Channel) (ft/ft)								0.0212				0.0217						0.0181				
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
REHI VI % / I % / M% / H% / VH% / E%	l																					

Harman, W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.O. Slate, A.G. Jessup, J.R. Everhart, and R.E. Smith. 1999. Bankfull hydraulic geometry relationships for North Carolina streams. Wildland Hydrology. AWRA Symposium Proceedings. D.S. Olsen and J.P. Potyondy, eds. American Water Resources Association. June 30-July 2, 1999. Bozeman, MT.

BEHI VL% / L% / M% / H% / VH% / E% Channel Stability or Habitat Metric

Biological or Other

	USGS	Regio	onal Curve Ii	nterval																		
Parameter	Gauge		rman et al, 1				Pre-Exi	sting Condition					Des	sign					Monitoring Bas	eline (As-built)		
Dimension and Substrate - Riffle	og.	LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)		23.0	80.0	4.8	6.6			8.8		2		9.0					8.8			12.0		3
Floodprone Width (ft)					25.5			42.7		2	20			50.0			27.1			42.6		3
BF Mean Depth (ft)		2.3	5.8	0.8	1.1			1.6		2		0.7					0.7			1.0		3
BF Max Depth (ft)		2.3	J.0 	0.6	1.1			2.4		2		1.0					1.1			2.3		3
BF Cross-sectional Area (ft²)		80.0	300.0	5.1	6.9			14.0		2		6.1					5.8			12.0		3
Width/Depth Ratio										2							10.2			13.2		
Entrenchment Ratio					5.6 3.9			6.2 4.8		2		13.3		>2.2								3
										2		1.0		>2.2			3.1			3.7		
Bank Height Ratio					1.5	167		1.6		1		1.0					1.0			1.0		3
d50 (mm)						16.7				1							17.1			23.3		2
Pattern																						
Channel Beltwidth (ft)																						
Radius of Curvature (ft)																						
Rc:Bankfull width (ft/ft)																						
Meander Wavelength (ft)																						
Meander Width Ratio																						
Profile																						
Riffle Length (ft)																						
Riffle Slope (ft/ft)												0.0175						0.010				9
Pool Length (ft)																						
Pool Spacing (ft)											14			45			19.0			63.0		19
Pool Max Depth (ft)											1.4			2.4			0.200			3.4		20
Pool Volume (ft ³)																						
Substrate and Transport Parameters																						
Ri% / Ru% / P% / G% / S%																						
SC% / Sa% / G% / B% / Be%																						
d16 / d35 / d50 / d84 / d95							< 0.063 / 7.2	2 / 16.7 / 54.5 / 85.7										<0.063 - 4.4 / 8	.7 - 12.1 / 17.1 -	23.3 / 55.3 - 77.	1 / 75.6 - 117.2	
Reach Shear Stress (competency) lb/f ²						0.79						0.65										
Max part size (mm) mobilized at bankfull (Rosgen Curve)																						
Stream Power (transport capacity) W/m ²						34.9						32.9										
Additional Reach Parameters																						
Drainage Area (SM)								0.1				0.12						0.12				
Impervious cover estimate (%)																						
Rosgen Classification								E4 (incised)				C4						C4 / F4				
BF Velocity (fps)								1.49				3.48										
BF Discharge (cfs)		290.0	2000.0	19.3				20.9				20.9										
Valley Length			2000.0	17.5				20.7				20.7						695				
, ,																						
Channel length (ft) ²								737				708						711				
Sinusity								1.06				1.02						1.02				
Water Surface Slope (Channel) (ft/ft)								0.0159				0.0177						0.0180				
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
BEHI VL% / L% / M% / H% / VH% / E%																						
Channel Stability or Habitat Metric																						
Biological or Other																						

* Harman, W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.O. Slate, A.G. Jessup, J.R. Everhart, and R.E. Smith. 1999. Bankfull hydraulic geometry relationships for North Carolina streams. Wildland Hydrology. AWRA Symposium Proceedings. D.S. Olsen and J.P. Potyondy, eds. American Water Resources Association. June 30-July 2, 1999. Bozeman, MT.

Parameter	USGS Gauge		onal Curve I rman et al, 1				Pre-Exis	ting Condition ¹					De	sign					Monitoring Ba	seline (As-built)		
Dimension and Substrate - Riffle	_	LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)		23.0	80.0	5.5	6.0			16.1		4		10.0					9.8			10.7		3
Floodprone Width (ft)					32.0			>89		4	2			80.0			37.8			48.1		3
BF Mean Depth (ft)		2.3	5.8	0.9	0.5			1.3		4		0.7					0.6			0.8		3
BF Max Depth (ft)					1.3			1.9		4		1.0					1.0			1.4		3
BF Cross-sectional Area (ft²)		80.0	300.0	6.4	5.7			13.6		4		7.0					6.5			8.7		3
Width/Depth Ratio					4.6			35.6		4		14.3					13.1			16.9		3
Entrenchment Ratio					5.0			8.2		4				>.2.2			3.5			4.5		3
Bank Height Ratio					1.1			1.9		4		1.0					1.0			1.0		3
d50 (mm)					6.5			7.3		2							18.6			28.9		3
Pattern					0.5			7.5		2							10.0			26.7		3
Channel Beltwidth (ft)											35.0			80.0			22.0			52.1		12
Radius of Curvature (ft)											20.0			30.0			28.7			43.6		15
Rc:Bankfull width (ft/ft)											2.0			3.0			3.0			3.8		3
Meander Wavelength (ft)											70.0			120.0			90.2			130.9		15.0
Meander Width Ratio											3.5			8.0			3.0			4.9		3
Profile																						
Riffle Length (ft)																						
Riffle Slope (ft/ft)												0.016						0.011				23
Pool Length (ft)																						
Pool Spacing (ft)											36			63			11			80		35
Pool Max Depth (ft)											1.4			2.4			0.2			1.3		34
Pool Volume (ft ³)																						
Substrate and Transport Parameters																						
Ri% / Ru% / P% / G% / S%																						
SC% / Sa% / G% / B% / Be%																						
d16 / d35 / d50 / d84 / d95						<0.063 / 3.	9 - 4.6 / 6.5	- 7.3 / 19.3 - 20.4 / 3	30.8 - 32.0								< 0.06	3 - 5.6 / 9.9 - 16.3	8 / 18.6 - 28.9 / 8	5.1 - 99.5 / 154.8	8 - >2048 / 180 -	>2048
Reach Shear Stress (competency) lb/f ²						0.3	7 - 4.0 / 0.3	- 7.57 17.5 - 20.47 .	30.0 - 32.0			0.47					<0.00	3 - 3.07 7.7 - 10.5	77 10.0 - 20.77 0	5.1 - 77.5 / 154.0	7-220407100-	>2040
Max part size (mm) mobilized at bankfull (Rosgen Curve)																						
						15.7						25.6										
Stream Power (transport capacity) W/m ²						15.7						25.6										
Additional Reach Parameters								0.2						0.2						0.2		
Drainage Area (SM)								0.2						0.2						0.2		
Impervious cover estimate (%)																						
Rosgen Classification								C4 / E4 (incised)				C4						C4				
BF Velocity (fps)					3.6			3.6		2		3.8										
BF Discharge (cfs)		290.0	2000.0	24.8	26.4			28.0		2		26.4										
Valley Length																		1377				
Channel length (ft) ²								1,849				1,630						1621				
Sinuosity								1.31				1.17						1.18				
Water Surface Slope (Channel) (ft/ft)								0.0111				0.0122						0.0122				
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
BEHI VL% / L% / M% / H% / VH% / E%																						
Channel Stability or Habitat Metric																						
Biological or Other																						
Diological of Other																						

Reach 4 (232 LF)	USGS	ъ	amal Course	.towno1																		
Parameter	USGS Gauge		onal Curve II rman et al, 1					isting Condition						sign					Monitoring Bas			
Dimension and Substrate - Riffle		LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)		23.0	80.0	5.7								10.5										
Floodprone Width (ft)											25			110.0								
BF Mean Depth (ft)		2.3	5.8	0.9								0.8										
BF Max Depth (ft)												1.2										
BF Cross-sectional Area (ft²)		80.0	300.0	6.7								8.7										
Width/Depth Ratio												12.5										
Entrenchment Ratio														>2.2								
Bank Height Ratio												1.0										
d50 (mm)																						
Pattern																						
Channel Beltwidth (ft)																						
Radius of Curvature (ft)																						
Rc:Bankfull width (ft/ft)																						
Meander Wavelength (ft)																						
Meander Width Ratio																						
Profile																						
Riffle Length (ft)																						
Riffle Slope (ft/ft)																						
Pool Length (ft)																						
Pool Spacing (ft)																						
Pool Max Depth (ft)																						
Pool Volume (ft ³)																						
Substrate and Transport Parameters																						
Ri% / Ru% / P% / G% / S%																						
SC% / Sa% / G% / B% / Be%																						
d16 / d35 / d50 / d84 / d95																						
Reach Shear Stress (competency) lb/f ²																						
Max part size (mm) mobilized at bankfull (Rosgen Curve)																						
Stream Power (transport capacity) W/m ²																						
Additional Reach Parameters																						
Drainage Area (SM)								0.2						0.2						0.2		
Impervious cover estimate (%)														0.2								
Rosgen Classification												C4						C4				
BF Velocity (fps)												3.22						C4				
BF Velocity (rps)		200.0	2000.0	25.0				20														
BF Discharge (cfs)		290.0	2000.0	25.8				28				28						202				
Valley Length																		202				
Channel length (ft) ²								234				232						232				
Sinuosity								1.21				1.20						1.15				
Water Surface Slope (Channel) (ft/ft)								0.0094				0.0113						0.012				
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
BEHI VL% / L% / M% / H% / VH% / E%																						
Channel Stability or Habitat Metric																						
Biological or Other																						

* Harman, W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.O. Slate, A.G. Jessup, J.R. Everhart, and R.E. Smith. 1999. Bozeman, MT.

Reach 5 (822 LF)																						
Parameter	USGS Gauge		onal Curve II rman et al, 1				Pre-Exis	ting Condition					De	sign					Monitoring Ba	seline (As-built)		
Dimension and Substrate - Riffle		LL	UL	Eq.	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)		23.0	80.0	6.1	5.2			17.0		3		10.5					10.2			11.1		3
Floodprone Width (ft)					51.0			84.0		3	25			110.0			43.8			59.4		3
BF Mean Depth (ft)		2.3	5.8	0.9	0.7			1.5		3		0.8					0.5			0.8		3
BF Max Depth (ft)					1.6			2.1		3		1.2					0.9			1.2		3
BF Cross-sectional Area (ft²)		80.0	300.0	7.4	8.0			12.3		3		8.7					5.7			8.0		3
Width/Depth Ratio					3.5			23.5		3		12.5					13.4			21.5		3
Entrenchment Ratio					3.0			13.2		3				>2.2			4.0			5.7		3
Bank Height Ratio					1.3			1.3		3		1.0					1.0			1.0		3
d50 (mm)					5.6			8.6		2							27.5			41.8		2
Pattern																						
Channel Beltwidth (ft)											37.0			84.0			23.8			44.2		10
Radius of Curvature (ft)											21.0			31.5			24.5			40.9		9
Rc:Bankfull width (ft/ft)											2.0			3.0			2.8			3.5		3
Meander Wavelength (ft)											73.5			126.0			95.2			139.9		9
Meander Width Ratio											3.5			8.0			2.9			3.9		3
Profile																						
Riffle Length (ft)																						
Riffle Slope (ft/ft)												0.02						0.018				11
Pool Length (ft)																						
Pool Spacing (ft)											42.0			74.0			25.0			96.0		14
Pool Max Depth (ft)											1.7			2.9			0.4			1.1		15
Pool Volume (ft ³)																						
Substrate and Transport Parameters																						
Ri% / Ru% / P% / G% / S%																						
SC% / Sa% / G% / B% / Be%																						
d16 / d35 / d50 / d84 / d95						< 0.063 /	2 - 4.8 / 5.6	- 8.6 / 20.4 - 28.7	/ 77 - 87.7								13.2	2 - 13.6 / 20.4 - 27	.8 / 27.5 - 41.8 /	65.1 - 84.1 / 114	1.6 - 122.5 / 128	- 256
Reach Shear Stress (competency) lb/f ²						0.55						0.47										
Max part size (mm) mobilized at bankfull (Rosgen Curve)																						
Stream Power (transport capacity) W/m ²						19.4						23.4										
Additional Reach Parameters						17.4						23.4										
Drainage Area (SM)								0.210						0.2						0.2		
Impervious cover estimate (%)								0.210						0.2						0.2		
Rosgen Classification								C4 / E4				C4						C4				
BF Velocity (fps)					2.41			3.15				3.4										
BF Discharge (cfs)		290.0	2000.0	28.8	2.71			29.6				29.6										
Valley Length		290.0	2000.0	20.0	l			29.0				47.0						742				
					I							000										
Channel length (ft) ²								849				809						822				
Sinuosity								1.17				1.17						1.11				
Water Surface Slope (Channel) (ft/ft)								0.0133				0.0106						0.0128				
BF slope (ft/ft)																						
Bankfull Floodplain Area (acres)																						
BEHI VL% / L% / M% / H% / VH% / E%																						
Channel Stability or Habitat Metric																						
Biological or Other																						

* Harman, W.A., G.D. Jennings, J.M. Patterson, D.R. Clinton, L.O. Slate, A.G. Jessup, J.R. Everhart, and R.E. Smith. 1999. Bankfull hydraulic geometry relationships for North Carolina streams. Wildland Hydrology. AWRA Symposium Proceedings. D.S. Olsen and J.P. Potyondy, eds. American Water Resources Association. June 30-July 2, 1999. Bozeman, MT.

Table 11a Cross section Marshalasy Data																												
Table 11a. Cross-section Morphology Data Town Creek Restoration Project - Option B: DMS	S Project	ID No. 9	5026																									
Reach 2 (711 LF)	o i roject	110.7	JU4U																									
,		Cros	ss-sectio	on X-1 ((Riffle)				Cro	ss-secti	on X-2	(Riffle)				Cro	oss-sect	ion X-3	(Pool)				Cro	ss-section	on X-4 ((Riffle)		
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												
BF Width (ft)	8.75	8.46	-	-	-	-	-	9.17	9.13	-	-	-	-	-	11.96	8.73	-	-	-	-	-	10.00	9.91	-	-	-	-	-
BF Mean Depth (ft)	0.66	0.57	-	-	-	-	-	0.90	0.84	-	-	-	-	-	1.00	1.14	-	-	-	-	-	0.84	0.71	-	-	-	-	-
Width/Depth Ratio	13.23	14.92	-	-	-	-	-	10.17	10.88	-	-	-	-	-	11.92	7.62	-	-	-	-	-	11.92	14.05	-	-	-	-	-
BF Cross-sectional Area (ft²)	5.79	4.80	-	-	-	-	-	8.28	7.66	-	-	-	-	-	12.01	9.99	-	-	-	-	-	8.38	7.00	-	-	-	-	-
BF Max Depth (ft)	1.09	0.96	-	-	-	-	-	1.37	1.34	-	-	-	-	-	2.25	2.00	-	-	-	-	-	1.45	1.32	-	-	-	-	-
Width of Floodprone Area (ft)	27.05	25.55	-	-	-	-	-	33.92	33.03	-	-	-	-	-	42.56	37.11	-	-	-	-	-	41.34	38.11	-	-	-	-	-
Entrenchment Ratio	3.09	3.02	-	-	-	-	-	3.70	3.62	-	-	-	-	-	3.56	4.25	-	-	-	-	-	4.13	3.84	-	-	-	-	-
Bank Height Ratio	1.01	1.06	-	-	-	-	-	1.01	1.01	-	-	-	-	-	1.00	1.00	-	-	-	-	-	1.00	1.05	-	-	-	-	-
Wetted Perimeter (ft)	10.07	9.60	-	-	-	-	-	10.97	10.81	-	-	-	-	-	13.96	11.01	-	-	-	-	-	11.68	11.33	-	-	-	-	-
Hydraulic Radius (ft)	0.57	0.50	-	-	-	-	-	0.75	0.71	-	-	-	-	-	0.86	0.91	-	-	-	-	-	0.72	0.62	-	-	-	-	-
Reach 3 (1,621 LF)																												
			ss-sectio	,	` ,						ion X-6	, ,						on X-7	, ,					oss-secti		` /		
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												
BF Width (ft)	10.65	11.8	-	-	-	-	-	13.63	19.3	-	-	-	-	-	9.84	10.72	-	-	-	-	-	11.92	12.08	-	-	-	-	-
BF Mean Depth (ft)	0.82	0.69	-	-	-	-	-	1.07	0.67	-	-	-	-	-	0.66	0.53	-	-	-	-	-	1.21	1.03	-	-	-	-	-
Width/Depth Ratio	13.05	17.3	-	-	-	-	-	12.77	28.6	-	-	-	-	-	14.87	20.15	-	-	-	-	-	9.85	11.72	-	-	-	-	-
BF Cross-sectional Area (ft²)	8.68	8.11	-	-	-	-	-	14.54	13	-	-	-	-	-	6.51	5.71	-	-	-	-	-	14.42	12.46	-	-	-	-	-
BF Max Depth (ft)	1.44	1.35	-	-	-	-	-	2.09	1.79	-	-	-	-	-	1.03	0.85	-	-	-	-	-	2.24	1.98	-	-	-	-	-
Width of Floodprone Area (ft)	48.09	48.1	-	-	-	-	-	50.26	49.4	-	-	-	-	-	38.30	38.48	-	-	-	-	-	50.45	50.46	-	-	-	-	-
Entrenchment Ratio	4.52	4.06	-	-	-	-	-	3.69	2.56	-	-	-	-	-	3.89	3.59	-	-	-	-	-	4.23	4.18	-	-	-	-	-
Bank Height Ratio	1.00	1.09	-	-	-	-	-	1.00	0.99	-	-	-	-	-	1.00	0.98	-	-	-	-	-	1.00	1.03	-	-	-	-	-
Wetted Perimeter (ft)	12.29	13.21	-	-	-	-	-	15.77	20.65	-	-	-	-	-	11.16	11.78	-	-	-	-	-	14.34	14.14	-	-	-	-	-
Hydraulic Radius (ft)	0.71	0.61	-	-	-	-	-	0.92	0.63	-	-	-	-	-	0.58	0.48	-	-	-	-	-	1.01	0.88	-	-	-	-	-
			ss-sectio		,																							
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												
BF Width (ft)	10.71	10.04	-	-	-	-	-																					
BF Mean Depth (ft)	0.63	0.53	-	-	-	-	-																					
Width/Depth Ratio	16.87	18.85	-	-	-	-	-																					
BF Cross-sectional Area (ft²)	6.79	5.34	-	-	-	-	-																					
BF Max Depth (ft)	1.06	0.80	-	-	-	-	-																					
Width of Floodprone Area (ft)	37.79	31.28	-	-	-	-	-																					
Entrenchment Ratio	3.53	3.12	-	-	-	-	-																					
Bank Height Ratio	1.00	0.97	-	-	-	-	-																					
Wetted Perimeter (ft)	11.97	11.10	-	-	-	-	-																					
Hydraulic Radius (ft)	0.57	0.48	-	-	-	-	-																					

Table 11a. Cross-section Morphology Data

Town Creek Restoration Project - Option B: DMS Project ID No. 95026 Reach 5 (822 LF)

		Cros	s-sectio	n X-10	(Riffle))			Cros	s-secti	on X-11	(Pool)				Cros	s-sectio	n X-12	(Riffle))			Cros	ss-secti	on X-13	(Riffle))	
Dimension and substrate	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+	Base	MY1	MY2	MY3	MY4	MY5	MY+
Based on fixed baseline bankfull elevation																												
BF Width (ft)	10.36	10.28	-	-	-	-	-	16.70	16.78	-	-	-	-	-	11.06	10.49	-	-	-	-	-	10.19	10.04	-	-	-	-	-
BF Mean Depth (ft)	0.77	0.70	-	-	-	-	-	1.09	1.01	-	-	-	-	-	0.52	0.53	-	-	-	-	-	0.59	0.51	-	-	-	-	-
Width/Depth Ratio	13.43	14.65	-	-	-	-	-	15.34	16.60	-	-	-	-	-	21.45	19.92	-	-	-	-	-	17.40	19.58	-	-	-	-	-
BF Cross-sectional Area (ft²)	8.00	7.21	-	-	-	-	-	18.19	16.97	-	-	-	-	-	5.71	5.53	-	-	-	-	-	5.97	5.15	-	-	-	-	-
BF Max Depth (ft)	1.18	1.10	-	-	-	-	-	2.20	2.11	-	-	-	-	-	1.07	0.80	-	-	-	-	-	0.91	0.79	-	-	-	-	-
Width of Floodprone Area (ft)	59.38	59.03	-	-	-	-	-	63.54	63.56	-	-	-	-	-	43.79	40.39	-	-	-	-	-	56.59	56.65	-	-	-	-	-
Entrenchment Ratio	5.70	5.74	-	-	-	-	-	3.81	3.79	-	-	-	-	-	3.96	3.85	-	-	-	-	-	5.55	5.64	-	-	-	-	-
Bank Height Ratio	1.01	0.99	-	-	-	-	-	1.00	1.03	-	-	-	-	-	1.01	1.00	-	-	-	-	-	1.00	0.97	-	-	-	-	-
Wetted Perimeter (ft)	11.90	11.68	-	-	-	-	-	18.88	18.80	-	-	-	-	-	12.10	11.55	-	-	-	-	-	11.37	11.06	-	-	-	-	-
Hydraulic Radius (ft)	0.67	0.62	-	-	-	-	-	0.96	0.90	-	-	-	-	-	0.47	0.48	-	-	-	-	-	0.53	0.47	-	-	-	-	-

Table 11b. Stream Reach Morphology Data Town Creek Restoration Project - Option B: DMS Project ID No. 95026

Reach 2 (711 LF)

Parameter			As-	built		MY1						
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)	8.8			12.0		3	8.5	9.2	9.1	9.9	0.7	3
Floodprone Width (ft)	27.1			42.6		3	25.6	32.2	33.0	38.1	6.3	3
BF Mean Depth (ft)	0.7			1.0		3	0.6	0.7	0.7	0.8	0.1	3
BF Max Depth (ft)	1.1			2.3		3	1.0	1.2	1.3	1.3	0.2	3
BF Cross-sectional Area (ft²)	5.8			12.0		3	4.8	6.5	7.0	7.7	1.5	3
Width/Depth Ratio	10.2			13.2		3	10.9	13.3	14.1	14.9	2.1	3
Entrenchment Ratio	3.1			3.7		3	3.0	3.5	3.6	3.8	0.4	3
Bank Height Ratio	1.0			1.0		3	1.0	1.0	1.1	1.1	0.0	3
d50 (mm)	17.1			23.3		2	24.7			28.0		2
Pattern	17.1			23.3		2	21.7			20.0		-
Channel Beltwidth (ft)												
Radius of Curvature (ft)												
Radius of Curvature (it) Rc:Bankfull width (ft/ft)												
Meander Wavelength (ft)												
Meander Wavelength (It) Meander Width Ratio												
Profile												
Riffle Length (ft)		0.010										
Riffle Slope (ft/ft)		0.010				9						
Pool Length (ft)	10.0					10						
Pool Spacing (ft)	19.0			63.0		19						
Pool Max Depth (ft)	0.200			3.4		20						
Pool Volume (ft ³)												
Substrate and Transport Parameters												
Ri% / Ru% / P% / G% / S%												
SC% / Sa% / G% / B% / Be%												
d16 / d35 / d50 / d84 / d95		<0.063 - 4.4 / 8	3.7 - 12.1 / 17.1 -	23.3 / 55.3 - 77.1	1 / 75.6 - 117.2		<0.0	063 - 5.0 / 12.8 -	16.7 / 24.7 - 28.0	0 / 58.0 - 79.2 / 7	77.1 - 128 / 64 - 1	180
Reach Shear Stress (competency) lb/f ²												
Max part size (mm) mobilized at bankfull (Rosgen Curve)												
Stream Power (transport capacity) W/m ²												
Additional Reach Parameters												
Drainage Area (SM)				0.12						0.12		
Impervious cover estimate (%)												
Rosgen Classification		C4 / E4						C4				
BF Velocity (fps)												
BF Discharge (cfs)												
Valley Length		695						695				
Channel length (ft) ²		711						711				
Sinuosity		1.02						1.02				
Water Surface Slope (Channel) (ft/ft)		0.0180						1.02				
BF slope (ft/ft)		0.0180										
Bankfull Floodplain Area (acres)												
BEHI VL% / L% / M% / H% / VH% / E%												
Channel Stability or Habitat Metric												
Biological or Other												

Table 11b. Stream Reach Morphology Data Town Creek Restoration Project - Option B: DMS Project ID No. 95026

Reach 3 (1,621 LF)

Reach 3 (1,621 LF)							1					
Parameter	As-built					MY1						
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n
BF Width (ft)	9.8			10.7		3	10.0	10.9	10.7	11.8	0.9	3
Floodprone Width (ft)	37.8			48.1		3	31.3	39.3	38.5	48.1	8.4	3
BF Mean Depth (ft)	0.6			0.8		3	0.5	0.6	0.5	0.7	0.1	3
BF Max Depth (ft)	1.0			1.4		3	0.8	1.0	0.9	1.4	0.3	3
BF Cross-sectional Area (ft²)	6.5			8.7		3	5.3	6.4	5.7	8.1	1.5	3
Width/Depth Ratio	13.1			16.9		3	17.3	18.8	18.9	20.2	1.4	3
Entrenchment Ratio	3.5			4.5		3	3.1	3.6	3.6	4.1	0.5	3
Bank Height Ratio	1.0			1.0		3	1.0	1.0	1.0	1.1	0.1	3
d50 (mm)	18.6			28.9		3	32.0			37.2		3
Pattern												
Channel Beltwidth (ft)	22.0			52.1		12						
Radius of Curvature (ft)	28.7			43.6		15						
Rc:Bankfull width (ft/ft)	3.0			3.8		3						
Meander Wavelength (ft)	90.2			130.9		15.0						
Meander Width Ratio	3.0			4.9		3						
Profile												
Riffle Length (ft)												
Riffle Slope (ft/ft)		0.011				23						
Pool Length (ft)												
Pool Spacing (ft)	11			80		35						
Pool Max Depth (ft)	0.2			1.3		34						
Pool Volume (ft ³)												
Substrate and Transport Parameters												
Ri% / Ru% / P% / G% / S%												
SC% / Sa% / G% / B% / Be%												
d16 / d35 / d50 / d84 / d95	<0.0	063 - 5.6 / 9.9 - 16.	3 / 18.6 - 28.9 / 8	5.1 - 99.5 / 154.8	->2048 / 180 ->	>2048	5.0	6 - 10.3 / 16.8 - 2	20.6 / 32 - 37.2 /	86 - 105 / 120.1	- 159.5 / 180 - 5	12
Reach Shear Stress (competency) lb/f ²												
Max part size (mm) mobilized at bankfull (Rosgen Curve)												
Stream Power (transport capacity) W/m ²												
Additional Reach Parameters												
Drainage Area (SM)				0.2						0.2		
Impervious cover estimate (%)												
Rosgen Classification		C4						C4				
BF Velocity (fps)												
BF Discharge (cfs)												
Valley Length		1377						1377				
Channel length (ft) ²		1621						1621				
Sinuosity		1.18						1.18				
Water Surface Slope (Channel) (ft/ft)		0.0122										
BF slope (ft/ft)		0.0122										
Bankfull Floodplain Area (acres)												
BEHI VL% / L% / M% / H% / VH% / E%												
Channel Stability or Habitat Metric												
Biological or Other												
biological of Other												

Table 11b. Stream Reach Morphology Data Town Creek Restoration Project - Option B: DMS Project ID No. 95026

Reach 5 (822 LF)

Parameter			As-	built			MY1							
Dimension and Substrate - Riffle	Min	Mean	Med	Max	SD	n	Min	Mean	Med	Max	SD	n		
BF Width (ft)	10.2			11.1		3	10.0	10.3	10.3	10.5	0.2	3		
Floodprone Width (ft)	43.8			59.4		3	40.4	52.0	56.7	59.0	10.1	3		
BF Mean Depth (ft)	0.5			0.8		3	0.5	0.6	0.5	0.7	0.1	3		
BF Max Depth (ft)	0.9			1.2		3	0.8	0.9	0.8	1.1	0.2	3		
BF Cross-sectional Area (ft²)	5.7			8.0		3	5.2	6.0	5.5	7.2	1.1	3		
Width/Depth Ratio	13.4			21.5		3	14.7	18.1	19.6	19.9	2.9	3		
Entrenchment Ratio	4.0			5.7		3	3.9	5.1	5.6	5.7	1.1	3		
Bank Height Ratio	1.0			1.0		3	1.0	1.0	1.0	1.0	0.0	3		
d50 (mm)	27.5			41.8		2	20.3			25.7		2		
Pattern														
Channel Beltwidth (ft)	23.8			44.2		10								
Radius of Curvature (ft)	24.5			40.9		9								
Rc:Bankfull width (ft/ft)	2.8			3.5		3								
Meander Wavelength (ft)	95.2			139.9		9								
Meander Width Ratio	2.9			3.9		3								
Profile														
Riffle Length (ft)														
Riffle Slope (ft/ft)		0.018				11								
Pool Length (ft)														
Pool Spacing (ft)	25.0			96.0		14								
Pool Max Depth (ft)	0.4			1.1		15								
Pool Volume (ft ³)														
Substrate and Transport Parameters														
Ri% / Ru% / P% / G% / S%														
SC% / Sa% / G% / B% / Be%														
d16 / d35 / d50 / d84 / d95		13.2 - 13.6 / 20.4 - 2	7.8 / 27.5 - 41.8 /	65.1 - 84.1 / 114	.6 - 122.5 / 128 -	256	6.7 -	10.3 / 14.1 - 18.	2 / 20.3 - 25.7 / 3	52.4 - 62.1 / 119	.3 - 134.7 / 180	- 256		
Reach Shear Stress (competency) lb/f ²														
Max part size (mm) mobilized at bankfull (Rosgen Curve)														
Stream Power (transport capacity) W/m ²														
Additional Reach Parameters														
Drainage Area (SM)				0.2						0.2				
Impervious cover estimate (%)														
Rosgen Classification		C4						C4						
BF Velocity (fps)														
BF Discharge (cfs)														
Valley Length		742						742						
Channel length (ft) ²		822						822						
Sinuosity		1.11						1.11						
Water Surface Slope (Channel) (ft/ft)		0.0128												
BF slope (ft/ft)														
Bankfull Floodplain Area (acres)														
BEHI VL% / L% / M% / H% / VH% / E%														
Channel Stability or Habitat Metric														
Biological or Other														

APPENDIX E

Hydrologic Data

Figure 5a. In-Stream Flow Gauge Graphs Town Creek Restoration Project: Project No. 95026

^{*} Surface water flow is estimated to have occurred when the pressure transducer reading is equal to or above 0.1 feet in depth.

Figure 5b. In-Stream Flow Gauge Graphs Town Creek Restoration Project: Project No. 95026

^{*} Surface water flow is estimated to have occurred when the pressure transducer reading is equal to or above 0.1 feet in depth.

Figure 6. Monthly Rainfall Data
Town Creek Restoration Project: Project No. 95026

Historic rainfall data from WETS Station: ALBEMARLE, NC0090

Observed 2016 Precipitaion from CHRONOS Station NEWL, North Stanly Middle School

MICHAEL BAKER ENGINEERING, INC., DMS PROJECT NO. 95026 TOWN CREEK RESTORATION PROJECT - OPTION B YEAR 1 MONITORING REPORT - 2017, YEAR 1 OF 5

Table 12. Verification of Bankfull Events Town Creek Restoration Project: DMS Project ID No. 95026								
Date of Data Collection	Date of Occurrence	Method	Reach Location	Gauge Height (FT)	Photo # (if available)			
10/12/2016	Between 5/2016 and 10/12/2016	Crest Gauge	Reach 5 Station 42+50	0.2	Crest Gauge Photo 1			

Table 13. Verification of In-stream Flow Conditions Town Creek Restoration Project: DMS Project ID No. 95026									
Flow Gauge ID Reach Location Consecutive Days Days of Flow of Flow of Flow of Flow									
TCFL1	Reach 1 Station 11+05	168	231						
TCFL2 Reach 2 Station 13+02 150 195									

Notes:

Flow success criteria for the Site is stated as: A surface water flow event will be considered intermittent when the flow duration occurs for a minimum of 30 days.

Surface water flow is estimated to have occurred when the pressure transducer reading is equal to or above 0.1 feet in depth.

¹Indicates the number of consecutive days within the monitoring year where flow was measured.

²Indicates the number of cumulative days within the monitoring year where flow was measured.

Town Creek - Hydrologic Data Photos

Crest Gauge Photo 1 (10/12/16)

Flow Documentation Photo - TC FL2 Photo (11/13/2016)